

Your trusted partner for NGS solution

2022

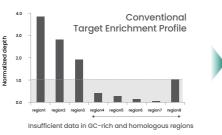
CELEMICS CUSTOMER PUBLICATIONS

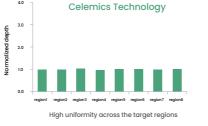
Past Client Cases with Summaries

Celemics provides results that can be trusted by customers.

Your Trsuted Partner for NGS Solutions

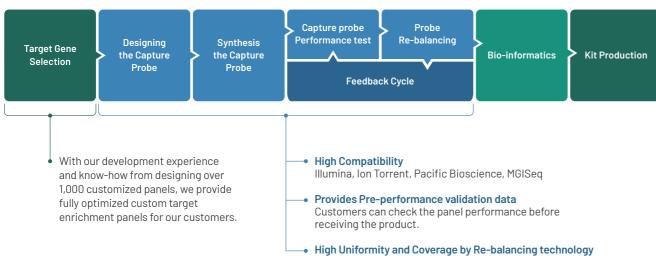
Targeted Sequencing Solution


At Celemics, we support our customers through target hybridization-based NGS services and products individually designed and manufactured by experienced researchers and technicians. We have established a robust system for customized design panels and developed a variety of kits according to our customer's needs.



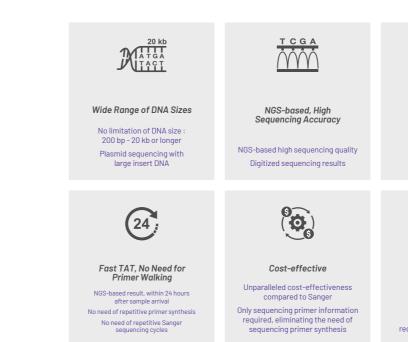
All Ready-to-use kits are completely validated and provide industry leading market performance. Our research team has designed and manufactured over a thousand customized panels, and promises to offer products and services of the highest quality to our customers.

Probe Design Technology

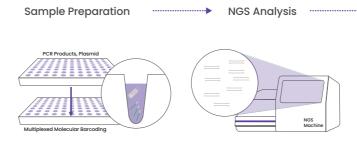

Market Need and Celemics' Solution

Panel Manufacturing Process

Market Need and Celemics' Solution


Generate high quality data / High sensitivity analysis

BTSeq[™] -Barcode Targeted Sequencing


BTSeq[™] (Barcode Tagged Sequencing)

High Accuracy Achieved by NGS-Based BTSeq[™] Sequencing Service

BTSeg[™] Service Process

High Accuracy Achieved by NGS-Based BTSeq[™] Sequencing Service

Celemics.com

Celemics has developed sample preparation techniques and bioinformatics software enabling cost-effective workflow. BTSeq[™] provides highly accurate results with short turnaround time (TAT) by effectively correcting sequencing error and generating consensus sequences through Celemics' proprietary techniques.

No Limitation of Origin

Sequencing samples of various species Virus, Bacteriophage Mycobiome, etc.

No Need of High Concentration Sample Compatible with uppurified PCR products Low-amount sample requirements as little as 10 ng/µl

Statistical & Data Processing **Bioinformatics Analysis**

Celemics Customer Publications

Product

ONCOLOGY

(Blood Cancer)

#	Title
27	Pyrosequencing-based quantitative measurement of CALR mutation allele burdens and their clinical implications in patients with myeloproliferative neoplasms
28	FLT3 Internal Tandem Duplication in Patients with Acute Myeloid Leukemia Is Readily Detectable in a Single Next-Generation Sequencing Assay Using the Pindel Algorithm
29	Targeted next generation sequencing can serve as an alternative to conventional tests in myeloid neoplasms
30	A Case of Acute Myeloid Leukemia With inv(16)(p13.1q22);CBFB-MYH11 Presenting With Faggot Cells
31	Clinical utility of targeted NGS panel with comprehensive bioinformatics analysis for patients with acute lymphoblastic leukemia
32	Cytogenetic evolution in myeloproliferative neoplasms with different molecular abnormalities
33	Telomere length and its correlation with gene mutations in chronic lymphocytic leukemia in a Korean population
34	Targeted sequencing aids in identifying clonality in chronic myelomonocytic leukemia
35	Genetic heterogeneity and prognostic impact of recurrent ANK2 and TP53 mutations in mantle cell lymphoma: a multi-centre cohort study

INHERITED

DISEASES

#	Title
36	Differential contributions of sarcomere and mitochondria-related multigene variants to the endophenotype of hypertrophic cardiomyopathy
37	ASXL1 is a molecular predictor in idiopathic cytopenia of undetermined significance
38	Functional Characteristics of Novel FGFRI Mutations in Patients with Isolated Gonadotropin- Releasing Hormone Deficiency
39	Ultradeep Sequencing Analysis of Paroxysmal Nocturnal Hemoglobinuria Clones Detected by Flow Cytometry: PIG Mutation in Small PNH Clones
40	Metaphyseal Dysplasia Without Hypotrichosis Caused by RNA Component of Mitochondrial RNA- Processing Endo-ribonuclease (RMRP) Gene Variants: The First Case in Korea
41	Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG)
42	Clinical and Genetic Characteristics of Korean Congenital Stationary Night Blindness Patients
43	Molecular Characteristics of Sequence Variants in GATA4 in Patients with 46, XY Disorders of Sex Development without Cardiac Defects
44	Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing
45	Incidental Severe Fatty Degeneration of the Erector Spinae in a Patient with L5–S1 Disc Extrusion Diagnosed with Limb-Girdle Muscular Dystrophy R2 Dysferin-Related
46	Detailed analysis of phenotypes and genotypes in megalencephaly-capillary malformation- polymicrogyria syndrome caused by somatic mosaicism of PIK3CA mutations
47	Copy number variations and multiallelic variants in Korean patients with Leber congenital amaurosis
48	Clinical features of familial hypercholesterolemia in Korea: Predictors of pathogenic mutations and coronary artery disease e A study supported by the Korean Society of Lipidology and Atherosclerosis
49	Impact of next-generation sequencing panels in the evaluation of limb-girdle muscular dystrophies
50	Targeted Gene Panel Sequencing for Molecular Diagnosis of Kallmann Syndrome and Normosmic Idiopathic Hypogonadotropic Hypogonadism
51	Frequency of hereditary neuropathy with liability to pressure palsies (HNPP) due to 17p11.2 deletion in a Korean newborn population
52	Targeted next-generation sequencing for the genetic diagnosis of dysferlinopathy
53	Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells
54	Skeletal overgrowth syndrome caused by overexpression of C-type natriuretic peptide in a girl with balanced chromosomal translocation, t(1;2)(q41;q37.1)

List of	Publi	cation
---------	--------------	--------

Title

ONCOLOGY

(Solid, Somatic / Germline)

1	Next-generation sequencing with comprehensive bioinformatics analysis facilitates somatic mosaic APC gene mutation detection in patients with familial adenomatous polyposis	Custom Panel
2	Genomic mutation profiling using liquid biopsy in Korean patients with prostate cancer : Circulating tumor DNA mutation predicts the development of castration resistanc	Custom Panel
3	Targeted next-generation sequencing-based detection of microsatellite instability in colorectal carcinomas	Custom Panel
4	Development of the phenylpyrazolo [3, 4-d] pyrimidine-based, insulin-like growth factor receptor/Src/AXL-targeting small molecule kinase inhibitor	Custom Panel
5	Genomic profiling of extracellular vesicle-derived DNA from bronchoalveolar lavage fluid of patients with lung adenocarcinoma	Mag Bead
6	Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and PD-1/PD-L1 Blockade Responses	Custom Panel
7	Phenotype-based single cell sequencing identifies diverse genetic subclones in CD133 positive cancer stem cells	Mag Bead
8	Urinary Exosomal and cell-free DNA Detects Somatic Mutation and Copy Number Alteration in Urothelial Carcinoma of Bladder	Custom Panel
9	Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells	Custom Panel
10	Somatic mosaic truncating mutations of PPMID in blood can result from expansion of a mutant clone under selective pressure of chemotherapy	Custom Panel
11	MLHI single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma	Custom Panel
12	Liquid biopsy-based tumor profiling for metastatic colorectal cancer patients with ultra-deep targeted sequencing	Custom Panel
13	Evaluating Tumor Evolution via Genomic Profiling of Individual Tumor Spheroids in a Malignant Ascites	Mag Bead
14	The Combination of Single-Cell and Next-Generation Sequencing Can Reveal Mosaicism for BRCA2 Mutations and the Fine Molecular Details of Tumorigenesis	Oncorisk
15	Development and validation of a next-generation sequencing-based multigene assay to predict the prognosis of estrogen receptor-positive, HER2-negative breast cancer	Custom Panel
16	Comparison of Clinical Features and Outcomes in Epithelial Ovarian Cancer according to Tumorigenicity in Patient-Derived Xenograft Models	Oncorisk
17	Association of pathway mutation with survival after recurrence in colorectal cancer patients treated with adjuvant fluoropyrimidine and oxaliplatin chemotherapy	Custom Panel
18	p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy	Custom Panel
19	Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer	Oncorisk
20	Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary breast/ ovarian cancer	Custom Panel
21	Spontaneous mutations in the single TTN gene represent high tumor mutation burden	Custom Panel
22	Evaluation of a hybridization capture-based hereditary cancer panel for the ion semiconductor- based next-generation sequencing system	Custom Panel
23	Detection of Germline Mutations in Breast Cancer Patients with Clinical Features of Hereditary Cancer Syndrome Using a Multi-Gene Panel Test	Custom Panel
24	Comprehensive Analysis of Germline Variants in Mexican Patients with Hereditary Breast and Ovarian Cancer Susceptibility	Oncorisk
25	Anaplastic Thyroid Cancer Arising from Dyshormonogenetic Goiter: c.3070T>C and Novel c.7070T>C Mutation in the Thyroglobulin Gene	Custom Panel
26	Biologic behavior of resected BRCA-mutated pancreatic cancer. Comparison with sporadic pancreatic cancer and other BRCA-related cancers	Custom Panel

ia With inv(16)(p13.1q22);CBFB-MYH11 Presenting With Faggot Cells Custom Panel

	-	_			
l ist	∩f	Pu	hl	ica	tion

Custom Panel

Product

Product

Custom Panel Custom Panel

Custom Panel

Custom Panel

Custom Panel

VIRUS &

BACTERIA

Title

55

56

57

58

59

				Oncolog	y	Solid, S	omatic nline	;
				1. BMC Med G	enomics. 2	019 Jul		
	Title	Product		CANCER SOMA	TIC GERMLINE	FFPE WGS	1	
5	Neutralization of Zika virus by E protein domain III-Specific human monoclonal antibody	TrueRepertoire		Next-generation seque somatic mosaic APC ge polyposis				
				Cancer Type	Colorectal Cancer	r		-
				Sample	28 Patients with f	amilial adenomatous p	olyposis	
6	Genome Sequences of Two GH Clade SARS-CoV-2 Strains Isolated from Patients with COVID-19 in South Korea	SARS-CoV-2, WGS		Study purpose	unexplained FAP	eral blood samples fror using NGS to estimate nutations in the APC g	the frequency of	F
,	Evidence of Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a Restaurant in Korea	SARS-CoV-2, WGS		Main data		n of variants with Integ sequencing chromatog results.		ary
	Restaurant in Korea			P1_c3295_3296del	P2 c.3860_3861dup	P3 c. 3577_3578dcl	P4 c.1754delT	
3	Genomic Investigation of the Coronavirus Disease 2019 Outbreak in the Republic of Korea	SARS-CoV-2, WGS						
)	Respiratory microbiome proles differ by recent hospitalization and nursing home residence in patients on mechanical ventilation	Mag Bead			0.000000000000000000000000000000000000			
				Conclusion		adequate combination to detect low level som		

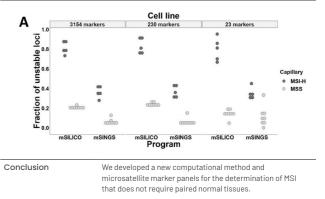
Title Product OTHER A High-Throughput Single-Clone Phage Fluorescence Microwell Immunoassay and 60 Laser-Driven Clonal Retrieval System 61 Enzymatic construction of shRNA library from oligonucleotide library Barcode-free next-generation sequencing error validation for ultra-rare variant 62 detection 63 Deep learning improves prediction of CRISPR-Cpfl guide RNA activity High-throughput construction of multiple cas9 gene variants via assembly of high-64 depth tiled and sequence-verified oligonucleotides

2. Inverstig Clin Urol. 2021 Mar

single assay.

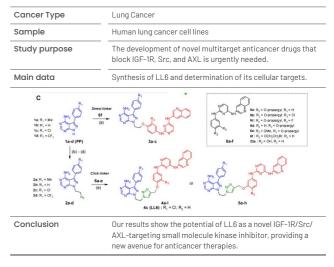
CANCER SOMAT	IC GER	MLINE	CTDNA	CUSTOMIZED PANEL
Genomic mutation profili Circulating tumor DNA m	2 2			
Cancer Type	Prosta	te Cancer (d	etDNA)	
Sample	Plasma	a samples fi	rom 56 prostate	e cancer patients
Study purpose	Korear	2 2	vith prostate ca	atic mutation profiles in Incer using liquid biopsy
Main data			,	iquid biopsy and solid its with prostate cancer.
	Liqu	id biopsy & tissue testi ctDNA	ng Liquid biopsy only	
Gene Fre	quency (%)	Tissue	CLENK	
TP53	12.5			
PIK3CA	3.6	-		
TMPRSS2-ERG	3.6			
PTEN	1.8			
BRCA1	1.8			
CCND1	1.8		_	
CCND2	1.8	_	-	
CCND3	1.8	_		
MYC SMAD4	1.8			
SE381	1.8		-	
HRAS	1.8			
FGFR3	1.8			
MET	1.8			Missense mutation
IDH1	1.8			Nonsense mutation
TET2	1.8			 Frameshift mutation Fusion mutation
MED12	1.0	the set of the set of the		Convinumber agin

Conclusion


Korean patients with prostate cancer showed a relatively low germline mutation rate compared to other ethnicities The ctDNA mutations detected by liquid biopsy can predict the development of castration resistance in patients with mHSPC.

3. PLoS One. 2021 Feb

Targeted next-generation sequencing-based detection of microsatellite instability in colorectal carcinomas


Cancer Type	Colorectal Cancer		
Sample	13 CRC cell lines, 84 fresh and 119 formalin-fixed CRC tissues		
Study purpose	Developing a computational method and panel markers to assess microsatellite instability (MSI) using a targeted next- generation sequencing (NGS) platform		
Main data	Comparison of the performances of mSILICO and mSINGS in the detection of microsatellite instability.		

4. Theranostics. 2021 Jan

CANCER SOMATIC CUSTOMIZED PANEL

Development of the phenylpyrazolo [3, 4-d] pyrimidine-based, insulin-like growth factor receptor/Src/AXL-targeting small molecule kinase inhibitor

References

- BMC Med Genomics. 2019 Jul 3;12(1):103. doi: 10.1186/s12920-019-0553-0.
 Investig Clin Urol. 2021 Mar;62(2):224-232. doi: 10.4111/icu.20200406.
 PLoS One. 2021 Feb 1;18(2):e0246356. doi: 10.1371/journal.pone.0246356.
 Theranostics. 2021 Jan 1;11(4):1918-1936. doi: 10.7150/thno.48865.

5. Transl Lung Cancer Res. 2021 Jan

CANCER SOMATIC CELEMAG CLEAN-UP BEADS

Lung Cancer

that of tissue DNA.

genetic alterations

Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and PD-1/PD-L1

Biliary tract cancer (BTC)

121 advanced BTC patients

P=0.016

6. Hepatology. 2021 Oct

CANCER SOMATIC CANCE MASTER

Genomic profiling of extracellular vesicle-derived DNA from bronchoalveolar lavage fluid of

20 patients with lung adenocarcinoma

Investigating the reliability of BALF-EV as a source for DNA of sufficient quality and at adequate quantities for use in NGS analysis for the detection of somatic mutations in EGFR-mutated lung adenocarcinoma in comparison with

VAF of clinically significant putative somatic mutations.

R²=0.32 P=0.00023

> 0.25 0.50

BALF EV DNA in patients with NSCLC can be a reliable DNA

source for targeted NGS for the identification of actionable

To identify the molecular features of treatment responses

to chemotherapy and immunotherapy in BTCs.

Molecular alterations associated with systemic

chemotherapy response in biliary tract cancer

Oncology

patients with lung adenocarcinoma

Cancer Type

Study purpose

Main data

Conclusion

Blockade Responses

Cancer Type

Study purpose

Main data

Conclusion

Sample

Sample

Solid, Somatic

/ Germline

Oncology

Solid, Somatic / Germline

9. Commun Biol. 2020 Apr

CANCER SOMATIC CUSTOMIZED PANEL

Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells

Cancer Type	Melanoma		
Sample	BE3-blasticidin fragment inserted piggyBac-BE3-GFP plasmid		
Study purpose	We demonstrate a previously unreported method combinin CRISPR RNA-guided deaminase and CROP-Seq technology that enables the introduction of SNVs in multiple genes and screening of the impact on function in addition to analyses of perturbations in single cells.		
Main data	Introduction and functional screening of multiple mutations using population analysis		
U.	Addama and a second secon		
Conclusion	According to our simulation, our system could cover 36,211 missense mutations and 3,491 nonsense mutations among		

10. PLoS One. 2019 Jun

CANCER SOMATIC FFPE CUSTOMIZED PANEL

Somatic mosaic truncating mutations of PPM1D in blood can result from expansion of a mutant clone under selective pressure of chemotherapy

	Cancer Type				t and Ovar	ian c	ancei	r			
Sam	ple				neral Bloo nts with br						-
Stud	y purp	ose		patier and th	ntify whe nts to such nerapy, so ous cance	n can matio	cers (PPM	or if it res I1D mutat	, sults fron tions in a	n the can ssociatio	cer n with
Main	data			Chara	cteristics	of PF	PM1D	truncatir	ng mutati	on carrie	rs.
ID Se	C Diagnosis	Age at diagnosis, y	Family history	DNA change	Affected protein	VAF	Median depth	Concurrent mutation (allele fraction)	PPMID mutation in tissue sample	Chemotherapy regimen	The period since the use of chemotherapy
P1 M	Breast cancer, left /Lung	82/66	Sibling. colon cancer	c.14230>T	p.Giu475Ter	0.154	1380	None	Not detected	Cispla and etoposide	20 years
P2 F	cancer Ovarian	59	none	c.1434C>A	p.Cys478Ter	0.187	723	BRCAI	Not	Carboplatin and	8 months
P3 F	cancer Ovarian cancer	52	none	c.1819delA	p.Glu540ClyfsTer7	0.054	903	(0.48) None	etected Not tested	paclitaxel Carboplatin, doxorubicin, cisplatin and belotecan	32 months
			none	c.1396_1397delATinsTA	p.IIe466Ter	0.071	858	None	Not	carboplatin and	10 months

patients with various cancers, including breast and ovarian cancers and found that all four patients bearing the truncating mutations had a history of cisplatin-based chemotherapy. This suggests that these mutations may be due to the increase of a mutant clone under selective pressure by cytotoxic therapy.

Metastatic Recurrent 5 PFS (month) RECIST This study proposes predictive molecular features of

chemotherapy and immunotherapy responses in advanced BTCs using clinical sequencing platforms. Our result provides an intuitive framework to guide the treatment of advanced BTCs benefiting from therapeutic agents based on the tumors' molecular features.

7. Biochem Biophys Res Commun. 2021 Jun

CANCER SOMATIC TOPQXSEP MAGBEAD WGS

Phenotype-based single cell sequencing identifies diverse genetic subclones in CD133 positive cancer stem cells

Cancer Type	Colorectal Cancer
Sample	Frozen colon cancer tissues from 5 patients
Study purpose	Articulating the presence of heterogeneous subclones within CD133 positive cancer stem cells through single cell sequencing.
Main data	Mutations in single CSCs also identified in metastatic tumor tissue.

this study investigated heterogenous subclones of CD133positive CSCs by novel single cell isolation method, and suggested that CSCs in primary colorectal tumors possess genetic subclones each sharing genetic profiles with subsequent liver metastatic tissue of the same patient

8. Sci Rep. 2018 Oct

Conclusion

	CANCER	SOMATIC	CTDNA	CUSTOMIZED PANEL
--	--------	---------	-------	------------------

. ΠΝΔ

Urinary Exosomal and cell-free DNA Detects Somatic Mutation and Copy Number Alteration in Urothelial Carcinoma of Bladder Cancer Type Urothelial bladder carcinoma (UBC) Sample 9 tumor tissues and 9 matched blood samples and 9 urine samples

to assess the availability of cell-free DNA (cfDNA) and Study purpose exosomal DNA (exoDNA) in urine as a source for liquid biopsy in UBC. Main data Somatic mutations identified in bladder cancer and genomic profiling in matched urinary cell free DNA and exosomal

BC2 BC2 BC2 BC2 BC3 BC3 BC4 BC5 BC5 BC5 BC5 BC5 BC5 BC6 BC8 BC8 BC8 BC8 BC8 4: 1805478 1: 7578392 17: 7579472 p.T330T p.E48X p.P53R p.T728K p.06770 p.0581X p.036120 p.19421 p.036120 p.19421 p.0342830 p.19421 p.024830 p.19421 p.024830 p.19421 c.C990T c.G142T c.C98G 81-100% 61-80% 41-60% 21-40% 5-20%

Conclusion Using cfDNA and exoDNA, we successfully identified somatic mutations and CNVs of UBC and we demonstrated that urinary exoDNA could be another source of liquid biopsy.

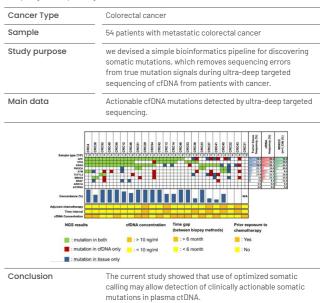
Transl Lung Cancer Res. 2021 Jan:10(1):104-116. doi: 10.21037/tlcr-20-888.
 Hepatology. 2021 Oct;74(4):1914-1931. doi: 10.1002/hep.31862.
 Biochem Biophys Res Commun. 2021 Jun 18:558:209-215. doi: 10.1016/j.bbrc.2020.09.005.
 Sci Rep. 2018 Oct 2:8(1):14707. doi: 10.1038/s41598-018-32900-6.

Celemics.com

Celemics.com

11. Sci Rep. 2020 Oct

CANCER SOMATIC CTDNA CUSTOMIZED PANEL


MLH1 single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma

Cancer Type	Hepatocellular carcinoma (HCC)		
Sample	A total of 146 consecutive treatment-naïve patients with HCC		
Study purpose	We aimed to identify novel single-nucleotide variants (SNVs) in circulating tumor DNA (ctDNA) in patients with HCC.		
Main data	SNV landscape of 33 patients with HCC who tested positive for SNVs using ctDNA sequencing of 69 cancer genes.		
Conclusion	HLH1 SNV detection in ctDNA is feasible, and thus, ctDNA		
	can be used to confidently detect somatic mutations in HCC tissue.		

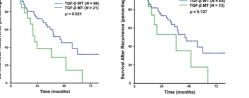
12. Cancer Res Treat. 2018 Jul

CANCER SOMATIC CTDNA CUSTOMIZED PANEL

Liquid biopsy-based tumor profiling for metastatic colorectal cancer patients with ultradeep targeted sequencing

- 1. Commun Biol. 2020 Apr 2:3(1):154. doi: 10.1038/s42003-020-0888-2. 2. PLoS One. 2019 Jun 26:14(6):e0217521. doi: 10.1371/journal.pone.0217521. 3. Sci Rep. 2020 Oct 20:10(1):17862. doi: 10.1038/s41598-020-74494-y. 4. PLoS One. 2020 May 7:15(5):e0232754. doi: 10.1371/journal.pone.0232754.

Oncology


Solid, Somatic / Germline

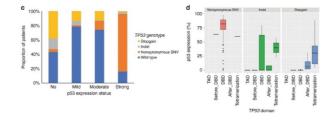
17. BMC Cancer. 2019 May

CANCER SOMATIC FFPE CUSTOMIZED PANEL

Association of pathway mutation with survival after recurrence in colorectal cancer patients treated with adjuvant fluoropyrimidine and oxaliplatin chemotherapy

Cancer Type	Colorectal cancer(CRC)		
Sample	Of the 516 patients with stage III or high-risk stage II CRC patients treated with surgery and adjuvant chemotherapy, 87 who had distant recurrence were included in the present study.		
Study purpose	The purpose of this study was to assess the association between pathway mutations and survival after recurrence.		
Main data	TGF- β pathway mutation and survival after recurrence / TGF- β pathway mutation and survival after recurrence in Non-MAC patients.		
(eostine se	- TGF-8 WT (N = 66) - TGF-8 WT (N = 56) - TGF-9 WT (N = 56) - TGF-9 WT (N = 56) - TGF-9 WT (N = 57) - TGF-9 WT (N = 56) - TGF-9 W		

Conclusion


Mutation in genes within TGF- β pathway may have negative prognostic role for SAR in CRC. Other pathway mutations were not associated with SAR.

18. Br J Cancer. 2019 Apr

CANCER SOMATIC MSI/TMB CUSTOMIZED PANEL

p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy

Cancer Type	Colorectal cancer (CRC)	
Sample	We analysed CRCs (N = 621) for the presence of TP53 alterations and for p53 expression, using targeted resequencing and immunohistochemistry.	
Study purpose	We attempted to elucidate whether p53 expression or TP53 mutation status was associated with cancer-specific survival in adjuvant FOLFOX-treated patients with stage III or high-risk stage II colorectal cancer.	
Main data	Correlation between p53 expression and TP53 genotype	

Conclusion p53-mild expression status was found to be an independent prognostic marker in adjuvant FOLFOX-treated patients with stage III and high-risk stage II CRC.

Solid, Somatic / Germline

13. Sci Rep. 2018 Aug

Oncology

CANCER SOMATIC TOPOXSEP MAGBEAD WGS

Cancer Type	Ovarian Cancer		
Sample	A 42 yr old female patient diagnosed with primary high-grad serous ovarian cancer (Grade 3, stage IIIC) presented with malignant ascites and peritoneal seeding.		
Study purpose	To uncover the genetic heterogeneity of tumor cells in malignant ascites, we introduced a genetic profiling methor for individual tumor spheroids which are the common form of tumor cells floating in malignant ascites.		
Main data	SNV analysis based on the WES data.		
Land The second	Single condition wateries in the second seco		
Conclusion	From the sequencing data, we discovered clonal or subclonal somatic CNAs and SNVs, based on which we constructed phylogenetic trees and inferred the evolutionary history of tumor cells in the patient. As a result, we found that the tumor cells in the malignant ascites were an independent		

14. Cancers. 2021 May

CANCER SOMATIC GERMLINE FFPE ONCORISK

The Combination of Single-Cell and Next-Generation Sequencing Can Reveal Mosaicism for BRCA2 Mutations and the Fine Molecular Details of Tumorigenesis

lineage from the primary tumor.

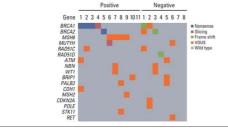
Cancer Type		Ovarian Cancer		
Sample		Ovarian Cancer Patient	Ovarian Cancer Patient (The patient is 66 years old, female)	
Study pu	urpose	We establish a diagnostic pipeline using high-resolution microscopy and laser microcapture microscopy to test for BRCA1/2 mutations in the tumor at the single-cell level, followed by deep next-generation sequencing of various tissues from the patient.		
Main da	ta	,	Summary of the results of the Sanger and next-generation sequencing on different tissues from the patient	
	Tissue Type	Sanger Sequencing (Yellow Box Indicates Position 7795 of <i>BRCA2</i>)	Next-Generation Sequencing (% of Mutant T Instead of Wild-Type G at Position 7795 of <i>BRCA2)</i>	
	Tissue Type Tumor 1	(Yellow Box Indicates Position	(% of Mutant T Instead of Wild-Type G at	

Conclusion To show the power of our approach, we used it to compare the BRCA2 mutational status of tumor samples with several nontumorous tissues from an ovary cancer patient. We proved that the patient showed a mosaic pattern in the case of the BRCA2 c.7795G>T mutation and, based on our results, we conclude that this mutation occurred de novo, during early embryonic development.

15. Clin Cancer Res. 2020 Dec

CANCER SOMATIC FFPE CUSTOMIZED PANEL

Cancer Type	Breast Cancer	
Sample	250 and 93 archived breast cancer samples with a known recurrence score in the training and verification sets. The assay was validated in 413 independent samples with long- term follow-up data on distant metastasis.	
Study purpose	This study aimed to develop and validate an NGS-based multigene assay to predict the distant recurrence risk.	
Main data	Receiver operating characteristic curve of NGS-Prognostic Score classified for distant recurrence and Probability of distant recurrence at 5 and 10 years based on NGS-Prognostic Scores.	
Figure 1	AUC 0.75 H	


Conclusion The newly developed and validated NGS-based multigene assay can predict the distant recurrence risk in ER-positive, HER2-negative breast cancer.

16. Cancer Res Treat. 2018 Jul

CANCER SOMATIC ONCORISK

Comparison of Clinical Features and Outcomes in Epithelial Ovarian Cancer according to Tumorigenicity in Patient-Derived Xenograft Models Cancer Type Epithelial ovarian cancer (EOC) Sample 88 EOC patients who underwent primary or interval debulkina suraerv. Study purpose To evaluate whether tumorigenicity was associated with the clinical features and outcomes of EOC patients.

Main data Comparison of germline mutation spectra relative to tumorigenicity using a 35-multigene panel next-generation sequencing assay. VOUS, variants of unknown significance.

Conclusion Tumorigenicity in a xenograft model was a strong prognostic factor and was associated with more aggressive tumors in FOC patients

Sci Rep. 2018 Aug 24:8(1):12724. doi: 10.1038/s4/1598-018-31097-y.
 Cancers. 2021 May 13;13(10):2354. doi: 10.3390/cancers13102354.
 Clin Cancer Res. 2020 Dec 15:28(24):6513-6522. doi: 10.1158/1078-0432.CCR-20-2107.
 Cancer Res Treat. 2018 Jul:50(3):956-963. doi: 10.4143/crt.2017.181

10

19. BMC Cancer. 2018 Jan

CANCER GERMLINE ONCORISK

Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer

Cancer Type	Breast Cancer	
Sample	120 patients who were negative for BRCA1/2 mutations, but had been diagnosed with breast cancer	
Study purpose	Evaluating the incidence and spectrum of pathogenic and likely pathogenic variants of cancer susceptibility genes in BRCA1/2 mutation-negative Korean patients with a high risk for hereditary breast cancer using a comprehensive multigene panel that included 35 cancer susceptibility genes.	
Main data	Percentage of patients with pathogenic or likely pathogenic mutations corresponding with each gene and number of patients with variants of uncertain significance (VUS) for each gene	

Conclusion

These combined results demonstrate that multigene panels offer an alternative strategy for identifying veiled pathogenic and likely pathogenic mutations in breast cancer susceptibility genes.

20. Cancer Sci. 2020 Oct

CANCER GERMLINE CUSTOMIZED PANEL

breast/ovarian cance Cancer Type Pan-Cancer Sample 700 patients who were suspected of a familial predisposition to cancer Study purpose We employed a comprehensive multigene panel that included 23 known or suspected cancer susceptibility genes to test Korean patients suspected of HBOC. Characteristics of BRCA 1/2-variant-negative patients with Main data pathogenic/likely pathogenic variants in other cancerassociated genes piblier) Claffe Netroper (751,752, 775) Petroper late petrop No. Pariner Tamor type - Apr Family Minory 1 PTI Breast merer (DC) - PEA 2022. 41 No Cear Tarlast 108+3022- 41 1708 denat (acce) 72 1708 denat (acce) 1708 (acc 2 PTH Breat cacre (202) 3 PTH Oward cacre (202) administrational -tread 10-, 1022-12 1706 gamic cance + oderstal ca By and BY, BEC
 BY, BEC H Ne H 1558 (central secon) H 1758 (securi secon)
 11
 71.98
 Beneroscie (EDC)
 19.4
 19.5
 19.6
 Beneroscie (EDC)
 19.4
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 19.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 10.6
 <t Pathogene (PVSLPAC, IP1) Likely pathogen Pathogenic (PVSLPAC, IP2) NA Pathogenic (PVSLPAC, IP2) NA

Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary

63040-7 g-Gal PM2 63943040

Conclusion

Natiogram (P131, PDE, PP) Patiogram Later values of (P131, PDE) Later endowers

Long-term hypersecretion of TSH in patients with TD may induce the development of thyroid cancer through direct stimulation as a growth factor and indirect changes in thyroid tissue that result in a precancerous fibrotic condition.

- BMC Cancer. 2019 May 6:19(1):421. doi: 10.1186/s12885-019-5650-0.
 Br J Cancer. 2019 Apr;120(8):797-805. doi: 10.1038/s41416-019-0429-2.
 BMC Cancer. 2018 Jan 16;18(1):83. doi: 10.1186/s12885-017-3940-y.
 Cancer Sci. 2020 Oct;111(10):3912-3925. doi: 10.1111/cas.14600.

Oncology

Solid, Somatic
/ Germline

21. NPJ Genom Med. 2020 Jan

22. Clin Chim Acta. 2021 Oct

CANCER GERMLINE CUSTOMIZED PANEL

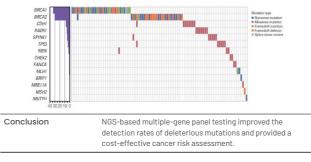
various manufacturers.

can be successfully implemented using the ThermoFisher

Scientific Ion S5 XL instrument and offers the opportunity to

select a variety of hybridization-based capture panels from

CANCER SOMATIC MSI/TMB CUSTOMIZED PANEL


Cancer Type	Pan-Cancer	
Sample	Whole-exome sequencing (WES) data from the pan-cancer cohort (n = 10,224) of TCGA, and targeted sequencing (tNGS) and TTN gene sequencing from 24 colorectal cancer samples (AMC cohort)	
Study purpose	we examined if mutation status within a single gene could be representative of TMB as assessed by larger-scale sequencing such as WES or tNGS.	
Main data	Prediction model construction using TTN-TMB and association between immunostimulatory signature and mutation.	
Conclusion We demonstrated that mutation count in a single gene,		

23. Cancer Res Treat. 2020 Jul

CANCER GERMLINE CUSTOMIZED PANEL

Detection of Germline Mutations in Breast Cancer Patients with Clinical Features of Hereditary Cancer Syndrome Using a Multi-Gene Panel Test

Cancer Type	Breast Cancer
Sample	496 breast cancer patients with clinical features of HBOC who underwent breast cancer surgery
Study purpose	We assessed the frequency of germline mutations using an next-generation sequencing (NGS)-based multiple-gene panel containing 64 cancer-predisposing genes in Korean breast cancer patients with clinical features of hereditary breast and ovarian cancer syndrome (HBOC).
Main data	Summary of 48 deleterious mutations in 95 patients.

24. Cancers. 2018 Sep

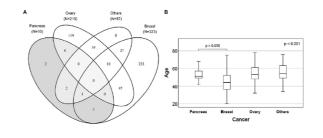
CANCER GERMLINE ONCORISK

ancer Type	Horoditor	Hereditary cancer		Cancer Type	Breast and Ovarian Cancer
ample	31 samples that harbored gene variants of a hereditary cancer predisposition (HCP) panel and NA12878 reference material We compared the analytic performance of Illumina's NextSeq and Ion S5 XL using a hybridization capture-based target enrichment method.		31 samples that harb cancer predispositio	31 samples that harbored gene variants of a hereditary cancer predisposition (HCP) panel and NA12878 reference material Sample 327 patients were enrol in the Genetic/Familial Ovarian of the National	327 patients were enrolled based on criteria established in the Genetic/Familial High-Risk Assessment: Breast and Ovarian of the National Comprehensive Cancer Network (NCCN) quidelines.
Ne			d Study purpose	To determine the prevalence of pathogenic variants in cancer predisposing genes in Mexican patients	
ain data	Sequencing run statistics and Analytical performance of next-generation sequencing (NGS) compared with Sanger sequencing and high-confidence calls of NA12878 reference materials		Main data	Allelic distribution of the pathogenic variants in patients with cancer.	
		ig and high-confider	nce calls of NA12878 referen	e	
Parameter		Ion S5 XL	Illumina NextSeq 550Dx	e #	
Parameter Mapped Reads Mean Read Length On-target reads, % Average base cover Target base covera	materials n 6 erage depth				Nati AN Procession Pro
Mapped Reads Mean Read Length On-target reads, % Average base cove	materials n 6 erage depth	Ion S5 XL 1,933,120 167 bp 82.3% 1,774x	Illumina NextSeq 550Dx 962,134 245 bp 56.8% 324x	e	

erences

NPJ Genom Med. 2020 Jan 14;5:33. doi: 10.1036/s41525-019-0107-6. Clin Chim Acta. 2021 Oct;521:223-228. doi: 10.1016/j.cca.2021.07.018. Cancer Res Treat. 2020 Jul;52(3):697-713. doi: 10.4143/crt.2019.559. Cancers. 2018 Sep 27;10(10):361. doi: 10.3390/cancers10100361.

Oncolog	,
25. Thyroid. 2	ILINE CUSTOMIZED PANEL
Anaplastic Thyroid Can c.7070T>C Mutation in t	Icer Arising from Dyshormonogenetic Goiter: c.3070T>C and Novel the Thyroglobulin Gene
Cancer Type	Thyroid cancer
Sample	46-year-old woman with congenital thyroid dyshormonogenesis (TD) who had two germline thyroglobulin (TG) gene mutation
Study purpose	Describing a patient with TD caused by a TG gene mutation who developed anaplastic thyroid cancer, along with two siblings who had an identical TG gene mutation.
Main data	Family pedigree and DNA sequence analysis of two heterozygous TG gene mutations in the three sisters.
Patient EEAA Sibling 1	
Conclusion	Long-term hypersecretion of TSH in patients with TD may induce the development of thyroid cancer through direct stimulation as a growth factor and indirect changes in thyroid tissue that result in a precancerous fibrotic condition


26. Pancreatology. 2021 Apr

CANCER GERMLINE CUSTOMIZED PANEL

condition.

Biologic behavior of resected BRCA-mutated pancreatic cancer: Comparison with sporadic pancreatic cancer and other BRCA-related cancers

Cancer Type	Pancreatic cancer (PC)
Sample	493 patients who had pathogenic BRCA1/2 mutations were enrolled in the study
Study purpose	We investigated the oncologic characteristics of resected PC with BRCA mutation to suggest management strategies.
Main data	Distribution of the cancers for BRCA1/2 mutation carriers (N 1/4 493) and their onset age.

Conclusion	BRCA-mutated PC occurs later than BRCA-mutated breast cancer. Active genetic testing to identify BRCA1/2 mutation carriers at the onset of breast cancer and continuous long-term surveillance of these patients can provide
	opportunities to detect BRCA-mutated PC at a resectable
	stade

Celemics.com

erences

1. Thyroid. 2020 Nov;30(11):1676-1680. doi: 10.1089/thy.2020.0248. 2. Pancreatology, 2021 Apr;21(3):544-549. doi: 10.1016/j.pan.2021.02.007.

Oncology

Blood Cancer

27. Clin Chim Acta. 2018 Aug

28. Ann Lab Med. 2019 May

Cancer Type

Study purpose

1.0 r

0.8

0.6

0.4

02

0

Main data

Sample

CANCER BLOOD CANCER CUSTOMIZED PANEL

FLT3 Internal Tandem Duplication in Patients With Acute Myeloid Leukemia Is Readily

Detectable in a Single Next-Generation Sequencing Assay Using the Pindel Algorithm

0.4

was superior to GATK MuTect2.

0.2

0.6

ITD allele fraction by fragment analysis

Acute myeloid leukemia(AML)

Bone marrow aspirates of 229 patients

patients harboring FLT3 ITD mutation.

To determine whether FLT3 ITD mutations could be

Correlation of the ITD mutant allele fraction between fragment analysis and the Pindel (0.2.0) algorithm for

accurately identified from targeted multigene NGS data

y=0.4296x-0.02 r=0.4239 95% CI: 0.3798 to 0.8191

0.8

The Pindel algorithm was highly effective in detecting FLT3 ITD mutations in the NGS assessment of AML patients and

1.0

1.2

 $P = 9.791 \times 10^{-5}$

CANCER BLOOD CANCER CUSTOMIZED PANEL

Pyrosequencing-based quantitative measurement of CALR mutation allele burdens and their clinical implications in patients with myeloproliferative neoplasms

Cancer Type	Myeloproliferative neoplasms (MPNs)				
Sample	24 patients who had been diagnosed with MPN from 1997 to 2016 without JAK2 or MPL mutations.				
Study purpose	We developed a pyrosequencing-based method for the quantification of CALR mutations and compared the results using Sanger sequencing, fragment length analysis (FLA), digital-droplet PCR (ddPCR), and next-generation sequencing (NGS).				
Main data	Linear regression plots and Bland-Altman bias plots of the variant allele frequencies (VAFs) of CALR mutations between results measured by pyrosequencing and next generation sequencing (NGS)				
(%) SD 44 SD 44 V 44 V 20 V 14 V 20 V 14 V 20 V 14 V 20 V 10 V 20 V 20 V 20 V 20 V 20 V 20 V 20 V 2	p = 0.494 x + 0.364 $ p' = 0.722 $ $ p' =$				
Conclusion	Pyrosequencing was a useful rapid sequencing method to determine the burden of CALR mutations.				

29. PLoS One. 2019 Mar

Cancer Type	Myeloid neoplasms 129 patients (95 were diagnosed with Acute myeloid leukemia, 31 were diagnosed with Myeloproliferative neoplasms, and three were diagnosed with Myelodysplastic syndrome)				
Sample					
Study purpose	We have designed a comprehensive next-generation sequencing assay to detect somatic mutations, translocations, and germline mutations in a single assay and have evaluated its clinical utility in patients with myeloid neoplasms.				
Main data	With capture probes targeting intronic breakpoints, DNA sequencing could detect recurrent translocations				

Conclusion We demonstrated that NGS testing, as a single assay, can be a good supplement for a number of conventional molecula and cytogenetic tests through careful probe design and comprehensive bioinformatics analyses.

30. Ann Lab Med. 2021 May

CANCER BLOOD CANCER CUSTOMIZED PANEL

Cancer Type	Acute Myeloid Leukemia (AML)				
Sample	65-year-old woman				
Study purpose	Unlike in other AMLs, in acute promyelocytic leukemia (APL), bleeding is the most common cause of early death. Thus, prompt treatment of patients with APL is necessary, and a presumptive APL diagnosis should be made				
Main data	 Characteristics of four AML cases with inv(16)(p13.1q22) with				

Sex/age (yr	0	F/65	M/32	M36	M/12
Underlying	disease	DM, colon adenoma	HIV infection, Hodgkin lymphoma	None	None
Initial CBC	;	WBC count 9.4 × 10 ⁹ /L Hb 95 g/L Platelet count 37 × 10 ⁹ /L	WBC count 67.4 \times 10 ⁹ /L Hb 85 g/L Platelet count 10 \times 10 ⁹ /L	$\begin{array}{l} \mathrm{WBC} \ \mathrm{count} \ 22.0 \\ \times \ 10^9/L \ \mathrm{Hb} \ 98 \\ \mathrm{g'L} \ \mathrm{Platelet} \ \mathrm{count} \\ \mathrm{42} \times \ 10^9/L \end{array}$	WBC count 20.85 \times 10 ⁹ /L Hb 106 g L Platelet count 55 \times 10 ⁹ /L
Cytogeneti	c study	47,XX,inv(16) (p13.1q22), +22[17]/46,XX[3]	47,XY,+8,inv(16) (p13q22)[20]	inv(16) and hyperdiploidy of 52 chromosomes	47,XY,inv(16) (p13.1q22),+22[20]
Molecular (rearranger	study ment/variant)	<i>CBFB-MIH11 KIT</i> (p.Asp816Val)	CBFB-MIH11	CBFB-MIH11 KIT (p.Asp816Val)	KIT (p. Asp816Tyr)
Disease co	ane	CR after induction CTx	CR after induction CTx	CR after induction CTx	Died two days after remission

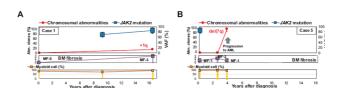
MYH11, resembling APL due to faggot cell presence.

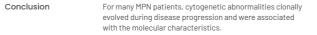
1. Clin Chim Acta. 2018 Aug;483:183-191. doi: 10.1016/j.cca.2018.05.001. 2. Ann Lab Med. 2019 May;39(3);327-329. doi: 10.3343/alm.2019.39.3.327.

3. PLoS One. 2019 Mar 6: 14(3):e0212228. doi: 10.1371/journal.pone.0212226 4. Ann Lab Med. 2021 May 1;41(3):333-335. doi: 10.3343/alm.2021.41.3.333.

Oncology	/ Blood Cancer
31. Leuk Lymp	bhoma. 2019 Dec
CANCER BLOO	D CANCER CUSTOMIZED PANEL
Clinical utility of targeted patients with acute lymp	d NGS panel with comprehensive bioinformatics analysis for whoblastic leukemia
Cancer Type	Acute lymphoblastic leukemia (ALL)
Sample	Bone marrow aspirates from 100 Patients with lymphoblastic leukemia
Study purpose	We have designed a comprehensive next-generation sequencing (NGS) assay to detect somatic mutations, translocations, and copy number changes and have evaluated its clinical utility in patients with ALL
Main data	The frequency of single nucleotide variations and copy number variations identified more than five patients. Visualization of genetic copy number analysis showing IKZF1 exon 4–7 deletion and chromosomal copy number analysis
Conclusion	We detected SNVs and CNVs simultaneously in a single

Conclusion


for several conventional tests and simplify the testing processes.


assay, which could provide an alternative or supplement

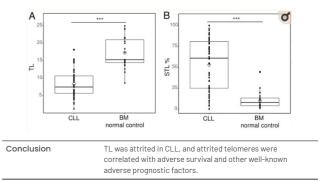
32. Blood Cells Mol Dis. 2019 Jul

CANCER BLOOD CANCER CUSTOMIZED PANEL

Cancer Type	Myeloproliferative neoplasms (MPNs)
Sample	Bone marrow aspirate samples or peripheral blood of 21 patients.
Study purpose	we studied the changes in chromosomal abnormalities in MPN patients during long-term follow-up and investigated the correlation of the molecular and hematologic characteristics of the disease.
Main data	The percentage of metaphases with chromosomal abnormalities and the variant allele frequencies (VAFs) of JAK2 or CALR mutations are plotted according to years after diagnosis for 12 patients (A–L) for whom mutation burden data were available and cytogenetic abnormalities were detected.

Conclusion

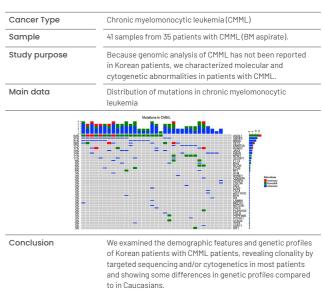
14


Celemics.com

33. PLoS One. 2019 Jul

CANCER BLOOD CANCER CUSTOMIZED PANEL

Telomere length and its correlation with gene mutations in chronic lymphocytic leukemia in a Korean population


Cancer Type	Chronic lymphocytic leukemia (CLL)
Sample	110 patients (41 females and 69 males) diagnosed with CLL
Study purpose	To investigate the prognostic significance of telomere length and its correlation with cytogenetic aberrations and somatic mutations
Main data	The TL and shortest TL% (STL%) of CLL patients

34. Leuk Res. 2019 Sep

CANCER BLOOD CANCER CUSTOMIZED PANEL

Targeted sequencing aids in identifying clonality in chronic myelomonocytic leukemia

- 1. Leuk Lymphoma. 2019 Dec;60(13):3138-3145. doi: 10.1080/10428194.2019.1627538. 2. Blood Cells Mol Dis. 2019 Jul;77:120-128. doi: 10.1016/j.bcmd.2019.04.007. 3. PLoS One. 2019 Jul 23;14(7):e0220177. doi: 10.1371/journal.pone.0220177. 4. Leuk Res. 2019 Sep;84:106190. doi: 10.1016/j.leukres.2019.106190.

Inherited Diseases

36. Mitochondrion. 2020 Jul

INHERITED DISEASE MITOCHONDRIA CUSTOMIZED PANEL

Sample		2 patient		5%) with	apical h	nypertro	phic	
	cardiomyopathy)							
Study purpose		We investigated phenotype-based clinical and genetic						
		characteristics of hypertrophic cardiomyopathy patients						
			ng comp		21 1		2 1	
					-	10 10010	ununun	variant
		d55	sociation	analysis	5.			
Main data		Eighty-two nuclear genes were included in a comprehensive						
		hypertrophic cardiomyopathy (HCM)-specific panel						
		11.71	or tropin		myopuu	iy (non	, opcom	o punci
	A. 33 sarcomer	e associated	genes					
	ACTC1	ACTN2	ANKRD1	BAG3	CASQ2	CAV3	CRYAB	CRSP3
	JPH2 MYO6	LDB3 MYOM1	MYBPC3 MYOZ2	MYH6 MYPN	*MYH7 NEXN	OBSCN	PLN	MYLK2 RYR2
	TCAP	TNNC1	TNNC2	*TNNI3	*TNNT2	*TPM1	TTN	VCL
FHL1	*8 validated genes which are linked with HCM							
B. 5 Phenocop		ygenes						
	GAA	LAMP2 P	PRKAG2 PTP	N11 TTR				
	C. 44 Mitochor	ndrial related r	nuclear DNA g	enes				
	AARS2	ACAD9	ACADVL	AGK	COA5	COA6	COQ2	COQ4
	COQ9 FOXRED1	COX10 GTPBP3	COX14 HADHB	COX15 LRPPRC	COX6B1 MRPL3	CPT2 MRPL44	ECHS1 MRPS22	ELAC2 MTO1
		GTPBP3 NDUFA11	NDUFA2	NDUFAF1	MRPL3 NDUFS2	MRPL44 NDUFS4	MRPS22 NDUFS8	NDUFV2
	NDUFA10 PCCB	SCO2	SDHD	SLC22A5	SLC25A20	SLC25A3	SLC25A4	SURF1

for HCM patients.

ASXL1 is a molecular predictor in idiopathic cytopenia of undetermined significance

syndrome (MDS)

37. Leuk Lymphoma. 2019 Mar

INHERITED DISEASE CUSTOMIZED PANEL

Sample

Study purpose

Main data

Asian populations, and a foundation for genetics-based

40 patients with idiopathic cytopenia of undetermined significance (ICUS) and 128 patients with myelodysplastic

We investigated the mutational profiles and clinical

implications of genetic mutations in patients with ICUS

using the targeted sequencing panel containing 88 genes.

Eighty-two nuclear genes were included in a comprehensive hypertrophic cardiomyopathy (HCM)-specific panel

The ASXL1 mutation which is frequently detected in elderly patients is a molecular predictor for pancytopenia and

survival in patients with ICUS.

ICUS

approaches that may enable individualized risk stratification

38. Exp Clin Endocrinol Diabetes. 2021 Jun

INHERITED DISEASE CUSTOMIZED PANEL

Functional Characte	ristics of Novel FGFR1 Mutations in Patients with Isolated Gonadotropin-
Releasing Hormone	Deficiency
Sample	8 natients (from 7 families) with EGER1 mutations identified

sample	8 patients (from 7 families) with FGFR1 mutations identified by targeted gene panel sequencing or whole exome sequencing (WES)
Study purpose	This study was performed to investigate clinical phenotypes and functional characteristics of FGFR1 mutations in patients with Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD)

Main data FGFR1 mutations in the studied patients.

Family No.	Subject No.	Nucleotide change	Amino acid change	Intron/Exon	Domain	ACMG/AMP guideline
1	1	c.265C>T	p.Q89*	3	D1 loop	Likely pathogenic
2	2	c.551dup	p.N185Kfs * 16	5	D1 loop	Likely pathogenic
3	3	c.630T>A	p.Y210*	6	D2 loop	Likely pathogenic
3	4	c.630T>A	p.Y210*	6	D2 loop	Likely pathogenic
4	5	c.1015T>C	p.Y339H	8	D3 loop	Likely pathogenic
5	6	c.2042G>T	p.56811	15	Tyrosine kinase domain	Uncertain significance
6	7	c.1663+2T>G	Splice site	12	Tyrosine kinase domain	Uncertain significance
7	8	c.1855-1G>A	Splice site	13	Tyrosine kinase	Uncertain significance

Conclusion This study identified seven loss-of-function mutations in FGFR1 which showed different degrees of impairment in vitro. These results expand the known phenotypic spectrum of FGFR1 mutations and suggest a broader biologic role of FGFR1 in reproduction.

39. Am J Clin Pathol. 2021 Jun

by F											
Sample				hem		s from 63 p ria (PNH) cl CM)				-	octurnal
Stu	dy	purpos		by F		determine or PIG gene		01110			.0100104
Mai	in c	lata		lltr	adaan Ta	na2 hatan	uencing	and F	DNH F	CM Recul	te of 27
_		data		Pati	ents Who	rgeted Seq Harbored	PIG Gene	Mut	ation.	RBC Clone Size	Grandocyte Clone
ID	Sex	Dx	PNH-related Sx*	Pati	ents Who	Nackotike Change	2	Total Depth	ation.	RBC Clone Size (FCM), %	Grandocyte Clone Size (FCM), %
_				Pati Gase PIGA	Accession Number	Nadeotide Change c.1188 + 1G>A	PIG Gene	Total Depth	VAE %	RBC Clone Size	Grandocyte Clone
ID	Sex	Dx	PNH-related Sx*	Pati	ents Who	Nackotike Change	PIG Gene	Total Depth	ation.	RBC Clone Size (FCM), %	Grandocyte Clone Size (FCM), %
ID P-02 P-03 P-06	Sex F F M	Dx Classic PNH AA-PNH Classic PNH	PNII-related Sx* Hemolytic anemia Hemolytic anemia Hemolytic anemia	Pati Gene PIGA PIGA PIGA PIGA	Accession Number NM_0026413 NM_0026413 NM_0026413 NM_0026413	Nackotike Change C.1188 + 1G>A C.1981C>T C.356G>A C.12880.pT	PIG Gene Protein Change p.Arg119Gin p.Tre2241s	Total Depth 1,616 4,321 1,671 543	vAF.%	RBC Clone Size (FCM), 75 0.75 0.59 84.21	Grandocyte Clone Sile (FCM), % 2.60 0.05 99.65
ID P-02 P-03	Sex F F	Dx Classic PNH AA-PNH	PNH-related Sx* Hemolytic anemia Hemolytic anemia	Pati Gane PIGA PIGA PIGA PIGA	Accession Number NM_0026413 NM_0026413 NM_0026413 NM_0026413	Nackostik Change C.1108 + 165-A C.1108 + 165-A C.12080;JT C.3580;JA C.12080;JT C.4580;JG	PIG Gene Protein Change p. Arg119Gin p. Trr424fs p. Ser183Arg	Total Depth 1,616 4,321 1,671 543 1,770	var. 54 186 0.74 120 67.40 53.22	RBC Clone Size (FCM), 5 0.75 0.59	Grandscyte Close Sile (FCM), % 2.60 0.05
ID P-02 P-03 P-06 P-07	Sex F M M	Dx Classic PNH AA-PNH Classic PNH AA-PNH	PNII-related Sx* Hemolytic anemia Hemolytic anemia Mesenteric ven thrombosis	Pati Gane PIGA PIGA PIGA PIGA PIGA	Accession Number NM_0026413 NM_0026413 NM_0026413 NM_0026413 NM_0026413 NM_0026413 NM_0026413	Naclostile Change C 1188 + 10>A C 1981C>T C 12880pT C 4891C>G C 112260pT C 4891C>G C 112260pT	PIG Gene Protein Change p.Arg119Gin p.Trn424fs p.Srn42Arg p.Pre441fs	Total Depth 1,616 4,321 1,671 543 1,770 1,471	var. %	RBC Cline Size (FCM), 5 0.75 0.59 84.21 16.22	Grandwyte Clone Siler (FCM), 55 2.60 0.05 99.68 63.3
ID P-02 P-03 P-06 P-07 P-08	Sex F M M	Dx Classic PNH AA-PNH Classic PNH AA-PNH AA-PNH	PNE-related Sx* Hemolytic anemia Hemolytic anemia Hemolytic anemia Mesenteric ven thrombosis None	Pati Piga Piga Piga Piga Piga Piga	Accession Number NM_0028413 NM_0028413 NM_0028413 NM_0028413 NM_0028413 NM_0028413 NM_0028413	Nacketike Change c.1188 + 1G>A c.1981C>T c.1980C>T c.12880cyT c.12880cyT c.12820cfT c.12820cfT c.12820cfT c.12820cfT c.12820cfT	PIG Gene Pretein Change p.Arg119Gin p.Frst2245 p.Ser183Arg p.Prod2125	Total Depth 1,616 4,321 1,671 543 1,770 1,471 3,613	var. 55 188 0.74 120 67.40 53.22 109 2.22	RBC Close Size (FCM), 75 0.75 0.59 04.21 16.22 0.9	Grandocyte Clone Size (FCM), % 2.60 0.05 99.68 63.3 4.57
ID P-02 P-03 P-06 P-07	Sex F M M	Dx Classic PNH AA-PNH Classic PNH AA-PNH	PNE-coard Sx* Hemolytic anemia Hemolytic anemia Mesenteric vein thrombosis None Hemolytic anemia,	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413	Nackotike Change C1188 + 165A C1988 + 165A C1989 C5A C12896 upT C2596 05A C12280 upT C2596 05C C12280 upT C2596 05C C12580 upT C12580 upT C1	PIG Gene Protein Change p.Arg119Gin p.Twat2485 p.Swat28Arg p.Phe44155 p.Cys204Arg	Total Depth 1,616 4,321 1,671 543 1,770 1,471 3,613 3,961	NAE, % 186 0.74 120 67.40 53.22 109 2.22 61.74	RBC Cline Size (FCM), 5 0.75 0.59 84.21 16.22	Grandwyte Clone Siler (FCM), 55 2.60 0.05 99.68 63.3
ID P-02 P-03 P-06 P-07 P-08	Sex F M M	Dx Classic PNH AA-PNH Classic PNH AA-PNH AA-PNH	PNE-related Sx* Hemolytic anemia Hemolytic anemia Hemolytic anemia Mesenteric ven thrombosis None	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NML 0028413 NML 0028413 NML 0028413 NML 0028413 NML 0028413 NML 0028413 NML 0028413 NML 0028413	Nacketike Changer C.1188 + 1G>A C.1188 + 1G>A C.19860-54 C.12880-56 C.12880-56 C.132264/T C.83564/C C.1087-5C C.481C-5T	PIG Gene Protein Change p.Arg119Gin p.Tm4245 p.Ser163Arg p.Pod415 p.Pod2155 p.Cy38Arg p.Ser168Lau	Total Depth 1,616 4,321 1,671 543 1,770 1,471 3,681 3,638	NAE, 55 186 0.74 120 67.40 53.22 109 2.22 61.74 6.66	RBC Close Size (FCM), 75 0.75 0.59 04.21 16.22 0.9	Grandocyte Clone Size (FCM), % 2.60 0.05 99.68 63.3 4.57
ID P-02 P-03 P-06 P-07 P-08	Sex F M M	Dx Classic PNH AA-PNH Classic PNH AA-PNH AA-PNH	PNE-coard Sx* Hemolytic anemia Hemolytic anemia Mesenteric vein thrombosis None Hemolytic anemia,	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413	Nackotike Change C1188 + 165A C1988 + 165A C1989 C5A C12896 upT C2596 05A C12280 upT C2596 05C C12280 upT C2596 05C C12580 upT C12580 upT C1	PIG Gene Protein Change p.Arg119Gin p.Twat2485 p.Swat28Arg p.Phe44155 p.Cys204Arg	Total Depth 1,616 4,321 1,671 543 1,770 1,471 3,613 3,961	NAE, % 186 0.74 120 67.40 53.22 109 2.22 61.74	RBC Close Size (FCM), 75 0.75 0.59 04.21 16.22 0.9	Grandocyte Clone Size (FCM), % 2.60 0.05 99.68 63.3 4.57
ID P-02 P-03 P-06 P-07 P-08 P-09	Sex F M F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH	PNB-related Stx* Hemolytic anemia Hemolytic anemia Mesendori veri trombostis Nong IMA thrombostis	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413 NM_0025413	Nedestile Charge C.1188 + 165A c.*961C-T c.33955A c.132264/T c.635504C c.132264/T c.635504C c.4391C5T c.4391C5T c.4310C5T	PIG Gene Protein Change p.Arg119Gin p.Truc2455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro42455 p.Pro455755	Total Depth 1,616 4,321 1,671 543 1,770 1,471 3,613 3,961 3,638 3,590	VAF.55 186 0.74 120 67.40 53.22 109 2.22 61.74 6.65 0.78	RBC Close Size (FCM), 75 0.75 0.59 84.21 16.22 0.9 72.88	Grandleyte Close Size (FCM), 5 2.80 0.05 99.68 63.3 4.57 99.55
ID P-02 P-03 P-06 P-07 P-08 P-09 P-09 P-10 P-11	Sex F F F F F F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH	PNE-colard Sx* Hemolytic anemia Hemolytic anemia Hemolytic anemia Hemolytic anemia, I&A. thombosis Hemolytic anemia Hemolytic anemia	Cene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NML_0026413	Nadostile Charge C1889 + IGS-A C1889 + IGS-A C1880 + IGS-A C1890 + IGS-A C1990 + IGS-A C19	PIG Gene Protein Change p.Arg119Gin p.Tm224/s p.Ser483Arg p.Ser483Arg p.Ser484au p.Ser484au p.Pea157/s p.Pr0212/s	Total Depth 1,616 4,321 1,671 543 1,771 3,613 3,661 3,580 3,590 3,590 3,590 4,752	VAE 55 188 0.74 120 53.22 109 53.22 61.74 6.66 0.78 66.88 0.78 0.78 0.68	RBC Chee Size (FCM), 5 0.75 0.59 84.21 0.9 72.88 74.25 0.2	Gaussievyte Cline Size (FCM), 5 2.60 0.05 99.68 93.3 99.55 99.55 99.53 0.05
ID P-02 P-03 P-06 P-07 P-08 P-09 P-10 P-11 P-12	Sex F F F F F F F F F F F F F	Dx Classic PNH Classic PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH AA-PNH AA-PNH	PNII-classI Sx* Hemotycic anemia Hemotycic anemia Mesensaric ven thrombosis Manonycic anemia IMA rhombosis Hemotycic anemia Hemotycic anemia	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NML 0025413 NML 0025413	Nadotide Change (1188 + 160-A < *9810-T < 23950-A < 1280-0 < 1280-0	PIG Gene p.Arg1196in p.Trazlas p.Ser163Arg p.Phe414rg p.Cys54Arg p.Ser168Leo p.Pro2125s p.Cys5420Cys	Total Depth 1,618 4,321 1,671 543 1,270 1,471 3,681 3,688 3,590 3,580 3,580 3,580 2,582 4,562 2,282	VAF, % 188 0.74 120 67.40 53.22 1.09 2.22 61.74 6.86 0.72 0.68 0.57	RBC Chee Size (PCM), 5: 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.2 0.11	Grandwcyte Choic Site (FCM), % 2.60 0.05 99.68 63.3 4.57 99.63 99.83 0.05 0.05
ID P-02 P-03 P-06 P-07 P-08 P-09 P-09 P-10 P-11	Sex F F F F F F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH	PNE-colard Sx* Hemolytic anemia Hemolytic anemia Hemolytic anemia Hemolytic anemia, I&A. thombosis Hemolytic anemia Hemolytic anemia	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NML_0026413	Harbored Nadostik Charge C188 + 165-A C188 + 165-A C18806A C1	PIG Gene p. Arg119Gin p. Trat245 p. Ser103Arg p. Phot415 p. Pro21255 p. Pro21255 p. Pro21255 p. Pro21255 p. Pro21255 p. Pro41545	Tetal Depth 1,616 4,321 1,671 543 1,771 3,683 3,590 3,590 3,590 3,590 3,590 4,752 2,262 4,547	VAF, % 186 0.74 120 53.22 109 53.22 61.74 6.68 0.78 66.88 0.72 0.68 0.57 94.50	RBC Chee Size (FCM), 5 0.75 0.59 84.21 0.9 72.88 74.25 0.2	Gaussievyte Cline Size (FCM), 5 2.60 0.05 99.68 93.3 99.55 99.55 99.53 0.05
ID P-02 P-03 P-06 P-07 P-08 P-09 P-10 P-12 P-14	Sex F F F F F F F M M	Dx Classic PHH AA-PHH Classic PHH AA-PHH Classic PHH Classic PHH Classic PHH	PNI extend Sx ⁴ Hernolycic central Hernolycic searcia Hernolycic searcia Meterialic venitia Meterialic searcia BAC horobosis Hernolycic searcia Hernolycic searcia Hernolycic searcia Hernolycic searcia Hernolycic searcia	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number NML 0025413 NML 0025413	Nadotiár Change C1888 + 160-A < "1991-51 < 21990-54 < 21900-54 < 219000-54 < 21900-54 < 21900-54 < 21900-54 < 21900-5	PIG Gene Protein Change p.Arg119Gin p.Tms22ds p.Sm163Arg p.Cys54Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Us1547s p.Vol1547s p.Vol1547s p.Vol1547s p.Vol1547s p.Vol1547s	Total Depth 1,618 4,321 1,673 1,471 3,081 3,080 3,080 3,080 3,080 3,080 3,080 2,082 2,282 4,942 2,282 4,947 2,235	VAE 55 186 0.34 120 67.420 53.220 109 2.22 61.74 6.66 0.72 0.68 0.57 84.50 0.63	RBC Chee Size (PCM), 5: 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.2 0.11 44.4	Granderyte Chone Size (FCM), 5 2 80 0.05 99.68 63.3 4.57 99.55 99.55 0.05 0.04 93.45
ID P02 P03 P06 P07 P08 P09 P10 P10 P11 P12 P14 P15	Sex F F M M F F F F F F F F F F F F F F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH AA-PNH AA-PNH AA-PNH AA-PNH	Philesbook SV Henrolytic savema Henrolytic savema Meranizic savema Meranizic savema BA Promotosis BA Promotosis Henrolytic savema Henrolytic savema Nora Henrolytic savema Nora Henrolytic savema Nora	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Namber NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413 NML0029413	Harbored Harbored (1188+165A (1188+165A (1188)+165A (1188)(27 (1188)(27 (1188)) (118)(27 (1188)(27 (118)(27)(27)(27)(27)(27)(27)(27)(27)(27)(27	PIG Gene p.Arg1196in p.Trst24fs p.Ser163Arg p.Pre441fs p.Poc124fs p.Poc1	Total Depth 1,616 4,321 1,673 1,777 3,613 3,661 3,580 3,580 3,580 3,580 3,580 3,580 3,580 2,524	VAF, % 186 0.74 120 67.40 53.22 109 67.40 6.85 0.78 6.86 0.78 0.78 0.78 0.78 0.78 0.78 0.68 0.57 94.50 0.63	BBC Close Size (FCM), 5 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.11 44.4 2.72	Grandlecyte Chore Size (FCM), % 2.60 0.05 99.68 63.3 4.57 99.55 99.55 0.05 0.05 0.05 0.05 0.05 0.
ID P02 P03 P08 P07 P08 P09 P10 P11 P12 P14	Sex F F F F F F F M M	Dx Classic PHH AA-PHH Classic PHH AA-PHH Classic PHH Classic PHH Classic PHH	PNI extend Sx ⁴ Hernolycic central Hernolycic searcia Hernolycic searcia Meterialic venitia Meterialic searcia BAC horobosis Hernolycic searcia Hernolycic searcia Hernolycic searcia Hernolycic searcia Hernolycic searcia	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number ML 00029413 NML 00029413	Nadotiár Change C1888 + 160-A < "1991-51 < 21990-54 < 21900-54 < 219000-54 < 21900-54 < 21900-54 < 21900-54 < 21900-5	PIG Gene Protein Change p.Arg119Gin p.Tms22ds p.Sm163Arg p.Cys54Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Cys164Arg p.Us1547s p.Vol1547s p.Vol1547s p.Vol1547s p.Vol1547s p.Vol1547s	Tatal Depth 1,616 4,321 1,613 3,661 3,638 3,590 3,580 3,590 3,580 3,590	VAE 54 186 0.74 120 67.40 53.22 109 67.40 6.65 0.78 66.68 0.78 66.68 0.72 0.68 0.57 84.50 0.63 33.49	RBC Chee Size (PCM), 5: 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.2 0.11 44.4	Granderyte Chone Size (FCM), 5 2 80 0.05 99.68 63.3 4.57 99.55 99.55 0.05 0.04 93.45
ID P02 P03 P06 P07 P08 P09 P10 P11 P12 P14 P15	Sex F F M M F F F F F F F F F F F F F F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH AA-PNH AA-PNH AA-PNH AA-PNH	Philesbook SV Henrolytic savema Henrolytic savema Meranizic savema Meranizic savema BA Promotosis BA Promotosis Henrolytic savema Henrolytic savema Nora Henrolytic savema Nora Henrolytic savema Nora	Pati Pica Pica Pica Pica Pica Pica Pica Pic	Accosin Number NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413 NML0005413	Harbored Harbored (1188+165A c*8615-T c3865A c=18865A c=18866A c=18866A c=18856A c=18856C c=1815C c=18	Plic Gene Protein Charge Protein Charge Protein Charge Protein Charge Protein Charge Protein Pr	E Mut Tetal Depth 1,616 4,321 1,671 543 1,671 543 1,671 543 1,671 543 3,080 3,590 3,5	vxF, 5: 186 0.74 120 0.740 53.22 1.09 2.22 61.74 0.78 0.78 0.68 0.78 0.68 0.79 0.63 4.50 0.63 4.50 0.63 4.50 14.11	BBC Close Size (FCM), 5 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.1 14.4 4.4 2.72	Grandlecyte Chore Size (FCM), % 2.60 0.05 99.68 63.3 4.57 99.55 99.55 0.05 0.05 0.05 0.05 0.05 0.
ID P-02 P-03 P-06 P-07 P-08 P-07 P-08 P-07 P-10 P-10 P-12 P-14 P-15	Sex F F M M F F F F F F F F F F F F F F F	Dx Classic PNH AA-PNH Classic PNH AA-PNH Classic PNH AA-PNH MDS-PNH AA-PNH AA-PNH AA-PNH AA-PNH	Philesbook SV Henrolytic savema Henrolytic savema Meranizic savema Meranizic savema BA Promotosis BA Promotosis Henrolytic savema Henrolytic savema Nora Henrolytic savema Nora Henrolytic savema Nora	Gene PIGA PIGA PIGA PIGA PIGA PIGA PIGA PIGA	Accession Number ML 00029413 NML 00029413	Harbored Harbored Netwell-Charge C1981-C3 C1995-C4 C1995-C4 C1995-C4 C1995-C4 C491-C5	PIG Gene Protein Change Protein Change Prot	Tatal Depth 1,616 4,321 1,613 3,661 3,638 3,590 3,580 3,590 3,580 3,590	VAE 54 186 0.74 120 67.40 53.22 109 67.40 6.65 0.78 66.68 0.78 66.68 0.72 0.68 0.57 84.50 0.63 33.49	BBC Close Size (FCM), 5 0.75 0.59 84.21 16.22 0.9 72.88 74.25 0.2 0.1 14.4 4.4 2.72	Grandwyte Chee Size (FCM), 5: 2,60 0,05 99,68 63,3 4,57 99,55 99,55 99,55 0,05 0,05 0,04 90,45 20,63

mutations were present in only a small portion without significant correlation to VAF or the presence or absence of a PIG mutation.

1. Mitochondrion. 2020 Jul;53:48-56. doi: 10.1016/j mito.2020.04.010. 2. Leuk Lymphoma. 2019 Mar;60(3):756-763. doi: 10.1080/10428194.2018.1492129. 3. Exp Clin Endocrinol Diabetes. 2021 Jun;129(6):457-463. doi: 10.1055/a-1151-4800 4. Am J Clin Pathol. 2021 Jun 17;156(1):72-85. doi: 10.1093/ajcp/aqaa211.

40. Sci Rep. 2018 Aug

Inherited Diseases

INHERITED DISEASE CUSTOMIZED PANEL

Metaphyseal Dysplasia Without Hypotrichosis Caused by RNA Component of Mitochondrial RNA-Processing Endo-ribonuclease (RMRP) Gene Variants: The First Case in Korea

, ,								
Sample	A girl aged f	ive years and 10 months						
Study purpose	heterozygou variants, n.8	ne first case in Korea of a girl with compound us RNA-processing endoribonuclease (RMRP) 116 > A and n.100C > T, that were diagnosed as I dysplasia without hypotrichosis (MDWH).						
Main data		Integrated genome browser snapshot of the RNA componen of mitochondrial RMRP gene variants.						
Pi-4	n.100C>T	n.81G>A						
	-							
-								
	-							

41. Genes. 2021 May

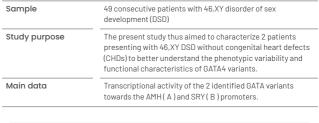
INHERITED DISEASE												
and Other Inherited Platele	Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG)											
Sample		: Blood samples from 11 Korean inherited platelet function disorders (IPFD) patients										
Study purpose	This study aimed differential diagno disorders (IPFDs)	osis of Korean Inh	nerite	d platelet fun	ction							
Main data	Laboratory results and identified genetic variants in Korean patients with Glanzmann thrombasthenia and other inherited platelet function disorders.											
$\begin{tabular}{c} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	Light Transmission Aggregometry	Flow Cytometry	Gene	Genetic Variants	Classification							
1 427 265 220 (60-180) (50-110)	NA	Decreased CD41 expression	ITGB3	c.1913+5G>T c.1451G>T (p.Gly484Val)	PV LPV							
2 491 166 174 (60-180) (50-110)	NA	NA	ITGB3	c.1913+5G>T [Hm]	PV							
3 347 229 236 (50-150) (50-110)	NA	NA	ITGA28	c.2975del (p.Glu992Glyfs*) c.2333A>C (p.Gln778Pro)	LPV PV							
4 193 NA NA Decreased resp	onse to ADP, COL, EPI, normal response to RIS	NA	ITG33	c.1913+5G>T [Hm]	PV							
5 313 >300 157 (81-192) (61-110)	NA	Complete deficiency of CD61/CD41a expression in platelet	ITGB3	c.917A>C (p.His306Pro) c.1913+50>T	PV PV							
6 234 244 239 Decreased resp (82-182) (62-109) Decreased resp	conse to ADP, COL, EPI, normal response to RIS	NA	ITGB3	c.1913+5G>T [Hm]	PV							
7 218 NA NA Decreased resp	conse to ADP, COL, EPI, normal response to RIS	Decreased CD41 expression	ITGA2B	c.257T>C (p.Leu86Pro) c.2333A>C (p.Gin778Pro)	LPV LPV							
8 392 223 240 (81-192) (61-110)	NA	Decreased CD41 expression	ПСя28	c.1750C> T (p.Arg584*) c.1184G>T (p.Gh;395Val)	PV LPV							
9 309 234 212 Decreased resp (82-182) (62-109) Decreased resp	conse to ADP, COL, EPI, normal response to RIS	Decreased CD41 expression	ITGA2B	c.2390del (p.Gly:797Valfi*29) c.2333A>C (p.Gln778Pro)	PV PV							
	come to ADP, COL, EPI, normal response to RIS	Decreased CD41 expression	ITGB3	c.1913+5G>T	LPV							
		expression		c.1595G>T (p.Cys532Phe)	LPV							
11 442 >300 >300 Decreased resp (82-182) (62-109)	conse to ADP, COL, EPI, normal response to RIS	Nà	RASGRP2	c.1479dup (p.Arg494Alafi*54) c.\$13+1G>A	LPV							
Conclusion	We demonstrated	the successful a	nnlio	ation of NGS f	or tho							
CONCLUSION	accurate and diffe											

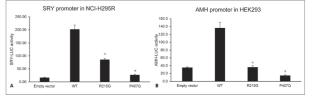
Conclusion

42. Genes. 2021 May

INHERITED DISEASE CUSTOMIZED PANEL

Clinical and Genetic Characteristics of Korean Congenital Stationary Night Blindness Patients


Sample				19 Korean patients with congenital stationary night blindness (CSNB)								
Study p		paper a	nd v eris	vere t tics a	the	refor	e ab	le to c	f each case i omprehend t e mutations i	he overall		
Main da	ita			~					_		tations ident night blindn	
N	Gene	Transcript	Nucleotide Change	Amino Acid Change	Zyposity	Segregation	CADD	FATHMM	SpliceAI	MAF (Geomad)	Demain	Novel Variant
_	CNGR	NM 001297.5	c.25444e00	p (Leu849Cysfs*15)	Hetero			0.987		2/249580		Nevel
			c.1035-1G>A		Hetero		32	0.547	0.96	Not found		Nevel
2	GNATI TRPMI	NM_000172.4	c.753C>A c.3280C>T	p.(Asn251L5x) p.(Arg1094*)	Metero Hetero		24.3 38	0.594		13/251156 1/249530	a subunit of G proteins -	Novel Lee et al. [30]
	NIX	NM 022567.2	c.3794delA c.182_183im/T	p.(Ass1265Ilefs*42) p.(Cys62Valfs*53)	Heni	Maternal	26.8	0.991		Not found Not found	- Leucine-rich repeat	Nexel
	NIX		c.35-1_35delGCinsTT	p(cysteran 13)	Meni	Material	14.16	0.941		Not found	Levene interrepent	Clin/hr [45]
			exce(13-23) deletice		Heni	-				Not found		Norel
7		NM 005183.2	c.1301C>T	p.(Ala434Val)	Heni	Maternal	17,47	0.143	0.80	Not foreid		Hove et al. [46]
	CACNAIF	NM 005183.2	c.2175_2179delins27	p.(Gh/726liefs*61)	Heni	Maternal	27.3	0.999		Not found	len transport	Nevel
9		NM_005183.2	c.1910+1G>A		Heni		24.9	0.976	0.95	Not found	Ion transport	Novel
20	CACNALI	NM_005153.2	c.4049G>A	p.(Gb/1350Aup)	Heni		27.2	0.9\$7		Not found	Voltage-dependent calcium channel	Kim et al. [41]
11	CACNAIF	NM_005183.2	c.342delC	p (Phe1158erfs*22)	Heni	Maternal	25.6	0.940		Not found		Rim et al. [47]
12	CACNAIF	NM_005183.2	c.2914C>T	p.(Arg972*)	Henri		12.6	0.352		Not found		Zito et al. [43]
13	CACNAIF	NM_005183.2	c.4042-1G>T		Henri	Maternal	34	0.993	0.98	Not found	Voltage-dependent calcium channel	Nevel
14	CACNAL	NM_005183.2	c.1910+1G>A		Heni		24.9	0.976	0.95	Not found	Ion transport	Novel
15	CACNAIF	NM_005183.2	c.5479C>T	p.(Arg1827*)	Hemi	Maternal	36	0.202		1/183192		Wutz et al. [15]
34		NM_005183.2	c.2576+1G>A		Hemi		34	0.993	0.55	1/62946		Wang et al. [52]
		NM_005183.2	c.926GPA	p.(Gb/309Aup)	Meni		26.2	0.974		Not found	Jon transport	Sun et al. [51]
11		NM_005183.2	c.2761C>A	p.(Leu921IIe)	Heni	Maternal	25.3	0.976		Not found	Ion transport	Nevel
15	CACNAIF	NM_005183.2	€.2767-1G>C		Heni		35	0.994	0.99	Not found	Ion transport	Nevel
Conclus	sion										series on the	5 51


phenotype correlation. The Riggs and complete types of TPRM1 gene mutations presented good visual acuity, whereas the incomplete and complete types of NYX gene mutations were frequently associated with poor visual acuity and nystagmus

43. Sex Dev. 2019

INHERITED DISEASE CUSTOMIZED PANEL

Molecular Characteristics of Sequence Variants in GATA4 in Patients with 46, XY Disorders of Sex Development without Cardiac Defects

Conclusion

Mutations in GATA4 are a rare cause of 46,XY DSD without heart anomalies and that GATA4 mutations in patients with 46,XY DSD may not be associated with CHDs

- Ann Lab Med. 2021 May 1;41(3):346-349. doi: 10.3343/alm.2021.41.3.346.
 Genes. 2021 May 6;12(5):693. doi: 10.3390/genes12050693.
 Genes. 2021 May 21;12(6):789. doi: 10.3390/genes12060789.
 Sex Dev. 2019;13(5-6):240-245. doi: 10.1159/000511258.

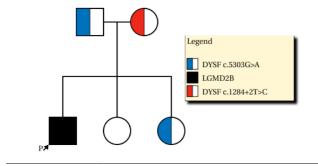
Inherited Diseases

44. Neurosurgery. 2020 Aug

INHERITED DISEASE CUSTOMIZED PANEL

Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing						
Sample	110 unrelated Korean patients with craniosynostosis (CRS), including 40 syndromic and 70 non-syndromic cases.					
Study purpose	To investigate the genomic landscape of CRS in a Korean cohort and also to establish a practical diagnostic workflow by applying targeted panel sequencing.					
Main data	Integrated genome browser snapshot of the RNA component of mitochondrial RMRP gene variants.					

Gene (transcript)	Proband	Sex	Age	Sequence change	Amino acid change	Genetic mode	Allele frequency	Origin of variant	CRS	Other clinical features	Final diagnosis (afte genetic testing)
FGFR3 (NM_001354810.1)	Pots	F	8m	c749C>G	p.P250R	AD	NR	Denovo	LC	Facial asymmetry	Muenke syndrome
	P076	F	Sm	c349C>G	p.P250R	AD	NR	NA	RC	Facial asymmetry, anal duplication, neonatal seizure	Muenke syndrome
	P100	F	10m	c749C>G	p.P250R	AD	NR	NA	BC.	Facial asymmetry	Muenke syndrome
	P104	F	11	c749C>G	p.P250R	AD	NR	NA	RC	Facial asymmetry	Muenke syndrome
FGFR2 (NM_000141.4)	P019	F	5	c.958A>G	p.T320A	AD	NR	Denovo	P	Exophthalmos, low-set ears	Crouzon syndrome
	P064	м	3	c.1012G>C	p.G338R	AD	NR	NA	RC, BL, M	Exophthalmos, Low-set ears, Both tri-angular face	Crouzon syndrome
	P092	м	10m	c.1024T>G	p.C342G	AD	NR	Denovo	S, BC	Exophthalmos, large thumbs and toes, hearing impairment	Pfeiffer syndrome
TWISTI (NM_000474.3)	P027	F	6	c.396_416dup	p.133_139dup	AD	NR	Maternal inherited	BC	Maternal history of CRS	Saethre-Chotzen syndrome
	P017	F	7	c.397_417dup	p.133_139dup	AD	NR	NA	BC	Facial asymmetry	Saethre-Chotzen syndrome
	P004	F	4	c.407C>G	p.P136R	AD	NR	Denovo	BC	Sunken midface, frontal bossing, nasolacrimal duct obstruction	Saethre-Chotzen syndrome
	P114	F	7	c466A>G	pJ156V	AD	NR	NA	RC	Chiari malformation, tongue-tie	Saethre-Chotzen syndrome
	P075	F	7	c.467T>C	p.It56T	AD	NR	NA	BC	Cleft uvula, ventricular septal defect, hearing impaiment	Saethre-Chotzen syndrome
TCF12 (NM_207037.1)	P109	F	2	c339G>C	p.E113D	AD	NR	NA	RC	Facial asymmetry	TCF12-related CRS
	P058	F	10	c.62/delT	p.5210Wfs*35	AD	NR	De novo	RC	Low set ears, preauricular fistula, high palate, short 5th fingers, Leg length asymmetry	TCF12-related CRS
	P068	M	3	c1468-7A>G	solicing variant	AD	NR	NA	RC	Hypospadias	TCF12-related CRS
	P052	F	8	c.1774C>T	p.P5925	AD	11 × 10 ⁻⁴	NA	LC	Choledochal cyst	TCF12-related CRS


t study shows the wide gen CRS, revealing various genetic factors for CRS pathogenesis.

45. Diagnostics. 2020 Jul

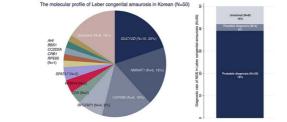
INHERITED DISEASE CUSTOMIZED PANEL

Incidental Severe Fatty Degeneration of the Erector Spinae in a Patient with L5-S1 Disc Extrusion Diagnosed with Limb-Girdle Muscular Dystrophy R2 Dysferin-Related

Sample	A 35-year-old male presented with right leg pain for 2 weeks without a previous history of limb weakness.
Study purpose	Case Report
Main data	Family pedigree diagnosed with compound heterozygous DYSF(dysferlin gene) variants.

Conclusion In the current study, we described a case with incidental severe fatty degeneration of the erector spinae who presented with L5-S1 disc extrusion and eventually was diagnosed with LGMD R2 dysferin-related.

46. Orphanet J Rare Dis. 2020 Aug


INHERITED DISEASE CUSTOMIZED PANEL

Sample Study purpose			12 patients from 12 families who satisfied the clinical Megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP) criteria and were confirmed genetically to have PIK3CA pathogenic variants.							
			We report on the clinical and molecular genetic characteristics of 12 Korean patients confirmed as having MCAP.							
Main data			Distribution of PIK3CA variants identified in this study and cancers.							
	a 4 3 2 1 0 200 400 500 1000 1200 1400 1600 1600 1600	East RBD ASD 16 105 Cardinal RBA Cardinal RBA Cardina	187 187 200	289 330 289 330 289 230 289 299 230 289 299 230 289 299 299 200 289 299 200 299 200 299 200 299 200 200 200 200 200 200 200 200 200 200	(423arc) 4427 51 4427 51 4427 51 4427 51 5431 Johnson (1) 5431 Johnson (1) 54	нор Непост 7 694 (1997) Селаностаностаностаностаностаностаностаност	797	Kinase Sector (Sector) Kinase Sector (Sector) Sector (Sector) Sector (Sector) Sector (Sector) Sector (Sector) Sector (Sector) Sector) Sector (Sector) Sector) Sector) Sector (Sector) Sector) Sector (Sector) Sector) Sector) Sector (Sector) Sector) Sector) Sector) Sector (Sector) Sector) Sector) Sector (Sector) Sector)		
Conclusion		(of mo	~	ms ev				g, allele frequencies re detected	

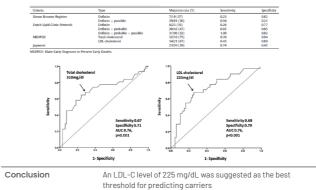
47. Mol Vis. 2020 Feb

INHERITED DISEASE CUSTOMIZED PANEL

Copy number variations and multiallelic variants in Korean patients with Leber congenital amaurosis							
Sample	50 patients (27 patients (54%) were male, and 11 (22%) showed systemic features)						
Study purpose	We comprehensively evaluated the mutational spectrum of Leber congenital amaurosis (LCA) and investigated the molecular diagnostic rate and genotype-phenotype correlation in a Korean cohort.						
Main data	Molecular diagnosis of Leber congenital amaurosis in Korean patients.						

Mutations in GUCY2D, NMNAT1, and CEP290 appeared to Conclusion be the major genetic causes of LCA in Korean patients. The overall molecular pickup rate of LCA was 84%. We also found that 4% of patients had multiple molecular diagnoses in two different disease loci, and 6% of patients were surgically or medically actionable

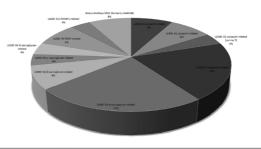
Neurosurgery. 2020 Aug 1:87(2):294-302. doi: 10.1093/neuros/nyz470.
 Diagnostics. 2020 Uul 29:10(8):530. doi: 10.3390/diagnostics100806530.
 Orphanet J Rare Dis. 2020 Aug 10:18(1):205. doi: 10.1186/s13023-020-01480-4. Mol Vis. 2020 Feb 24:26:26-35.


Inherited Diseases

48. Atherosclerosis. 2015 Nov

INHERITED DISEASE CUSTOMIZED PANEL

Clinical features of familial hypercholesterolemia in Korea: Predictors of pathogenic mutations and coronary artery disease e A study supported by the Korean Society of Lipidology and Atherosclerosis San


Sample	97 patients with low-density lipoprotein-cholesterol >190 mg/dL and xanthoma or familial hypercholesterolemia (FH)- compatible family history
Study purpose	The aim of this study was to determine the clinical features and the best diagnostic approach in Korean FH patients.
Main data	Prediction of putative pathogenic mutations according to four sets of clinical diagnostic criteria for FM.

49. Ann Hum Genet. 2019 Sep

INHERITED DISEASE CUSTOMIZED PANEL

Impact of next-generation sequencing panels in the evaluation of limb-girdle muscular dystrophies						
Sample	74 patients suspected of Limb-girdle muscular dystrophy (LGMD)					
Study purpose	We have evaluated the diagnostic rates of our custom NGS gene panel and investigated variant frequencies associated with LGMD subtypes in Turkey. The association between genotype and LGMD phenotypes was also analyzed.					
Main data	Diagnosis of the patients with pathogenic/likely pathogenic variants.					

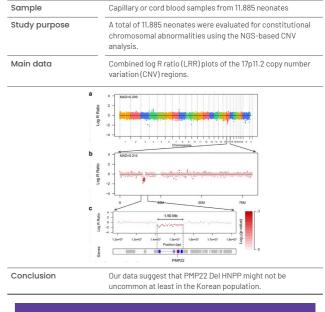
Conclusion We have achieved a 33.8% diagnosis rate in our 74-patient cohorts by using custom target capture LGMD gene panel. This ratio is consistent with previous literature reports and underlines the efficiency and importance of NGS technology in the molecular genetic evaluation of LGMD.

18

50. Exp Clin Endocrinol Diabetes. 2019 Sep

INHERITED DISEASE CUSTOMIZED PANEL

_				ncing for Mole ogonadotropic		Diagnosis of Kall gonadism	mann Syndr	ome and
Samp	ole			28 patients with Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) from 27 independent families.				
Study	/ purp	ose	9	,	a tar	rformed to estal geted gene pane	2	2.
Main	data			Molecular ge or likely patl		findings in patie ic variants	ents harborir	ng pathogeni
	Subject	Sex	Age at presenta-	Phenotype	Sequence	e variants		Interpretation
			tion (years)		Gene	Nucleotide change	Amino acid change	
	Subject	Sex M		Phenotype Kallmann syndrome, hearing defect			Amino acid change Splice site	Interpretation Pathogenic
			tion (years)	Kallmann syndrome,	Gene	Nucleotide change		
	1	м	tion (years)	Kallmann syndrome, hearing defect	Gene CHD7	Nucleotide change c.5405-7G>A	Splice site	Pathogenic
	1	M	tion (years) 14 21	Kallmann syndrome, hearing defect Kallmann syndrome Kallmann syndrome.	Gene CHD7 PROKR2	Nucleotide change c.5405-7G>A c.533G>C	Splice site p.W178S	Pathogenic Pathogenic
	1 2 3	M M M	tion (years) 14 21 16	Kallmann syndrome, hearing defect Kallmann syndrome Kallmann syndrome, hearing defect nIHH, primary	Gene CHD7 PROKR2 CHD7	Nucleotide change c.5405-7G>A c.533G>C c.118C>T	Splice site p.W178S p.Q40 *	Pathogenic Pathogenic Pathogenic
	1 2 3 4	M M F	tion (years) 14 21 16 19	Kalimann syndrome, hearing defect Kalimann syndrome Haaring defect niHH, primary amenorrhea	Gene CHD7 PROKR2 CHD7 FGFR1	Nucleotide change c.5405-7G>A c.533G>C c.118C>T c.1015T>C	Splice site p.W1785 p.Q40 * p.Y339H	Pathogenic Pathogenic Pathogenic Likely pathogenic
	1 2 3 4 5	M M F M	tion (years) 14 21 16 19 20	Kalimann syndrome, hearing defect Kalimann syndrome kalimann syndrome, hearing defect niHH, primary amenorrhea Kalimann syndrome	Gene CHD7 PROKR2 CHD7 FGFR1 FGFR1	Nucleotide change c.5405-7.G>A c.533.G>C c.118.C>T c.1015.T>C c.551.dup	Splice site p.W178S p.Q40 * p.Y339H p.N185Kfs * 16	Pathogenic Pathogenic Pathogenic Likely pathogenic Likely pathogenic
	1 2 3 4 5 6	M M F M	tion (years) 14 21 16 19 20 16	Kallmann syndrome, hearing defect Kallmann syndrome kallmann syndrome, hearing defect nIHH, primary amenorrhea Kallmann syndrome nIHH	Gene CHD7 PROKR2 CHD7 FGFR1 FGFR1 ANOS1	Nucleotide change c.5405-7G>A c.533G>C c.118C>T c.1015T>C c.551dup c.1260del	Splice site p.W1785 p.Q40 * p.N185Kfs * 16 p.Q421Kfs * 61 p.A234_A240del p.M176Tfs * 14/ p.	Pathogenic Pathogenic Pathogenic Likely pathogenic Likely pathogenic Likely pathogenic
	1 2 3 4 5 6 7	M M F M M M	tion (years) 14 21 16 19 20 16 18	Kallmann syndrome, hearing defect Kallmann syndrome Kallmann syndrome, hearing defect niHH, primary amenorrhea Kallmann syndrome niHH niHH	Gene CHD7 PROKR2 CHD7 FGFR1 FGFR1 ANOS1 SOX3	Nucleotide change c.5405-7.6>A c.533.6>C c.118C>T c.1015T>C c.1260del c.699_719del	Splice site p.W1785 p.Q40 * p.Y339H p.N185Kfs * 16 p.Q421Kfs * 61 p.A234_A240del	Pathogenic Pathogenic Pathogenic Likely pathogenic Likely pathogenic Likely pathogenic
	1 2 3 4 5 6 7 8	M M F M M M M	tion (years) 14 21 16 19 20 16 18 20 20	Kallmann syndrome, hearing defect Kallmann syndrome hearing defect niH4, primary amenorthea Kallmann syndrome niH4 niH4 niH4 niH4	Gene CHD7 PROKR2 CHD7 FGFR1 FGFR1 ANOS1 SOX3	Nucleotide change c.5405-7.6>A c.533.6>C c.118C>T c.1015T>C c.1260del c.699_719del	Splice site p.W1785 p.Q40 * p.N185Kfs * 16 p.Q421Kfs * 61 p.A234_A240del p.M176Tfs * 14/ p.	Pathogenic Pathogenic Pathogenic Likely pathogenic Likely pathogenic Likely pathogenic


Conclusion

We achieved a genetic diagnosis in 10 families (37 %) and detected variant of uncertain significance (VUS) in two patients (7.4 %). In addition, novel pathogenic or likely pathogenic variants were identified in eight probands in ANOS1, CHD7, FGFR1, TACR3, and SOX3.

51. Orphanet J Rare Dis. 2018 Mar

INHERITED DISEASE CUSTOMIZED PANEL

Frequency of hereditary neuropathy with liability to pressure palsies (HNPP) due to 17 p11.2 $\,$ deletion in a Korean newborn population

- Atherosclerosis. 2015 Nov;243(1):53-8. doi: 10.1016/j.atherosclerosis.2015.08.033.
 Ann Hum Genet. 2019 Sep;83(5):331-347. doi: 10.1111/ahg.12319.
 Exp Clin Endocrinol Diabetes. 2019 Sep:127(8):538-544. doi: 10.1055/a-0681-6608.
 Orphanet J Rare Dis. 2018 Mar 15;13(1):40. doi: 10.1186/s13023-018-0779-5.

Inherited Diseases

52. Neuromuscul Disord. 2015 Jun

INHERITED DISEASE CUSTOMIZED PANEL

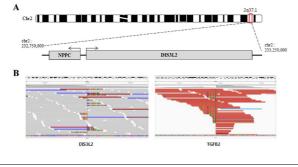
Sample	41 patients with dysferlinopathy (24 males/17 females) We applied and validated a targeted NGS based sequencing method for mutation detection in patients with dysferlinopathy, which was confirmed by immunohistochemical (IHC) staining and/or western blot analysis of skeletal muscles. Distribution of pathogenic variants discovered in the DYSF gene.			
Study purpose				
Main data				
p.Gin225His p.Ser25fs C2 C2 E2 C2 c.853+1G-C	C1284+2T-C p.Gin832Ter p.Trp992Arg c4795-2A+G p.Arg1593Gh p.Arg1593Ch p.Arg1592Ch p.Arg159Ch p.Arg15			
Conclusion	this study demonstrates that the high-throughput mutation screening method based on hybrid capture and NGS is highly accurate and efficient for the genetic diagnosis of dysferlinopathy and provides supportive evidence for the incorporation of the DYSF gene into multi-gene NGS panel			

53. Mutat Res. 2015 Jul

INHERITED DISEASE CUSTOMIZED PANEL

Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells		
Sample	Human adipose tissue-derived mesenchymal stem cells	
Study purpose	we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging	
Main data	Variant allele frequency in human umbilical cord blood- derived mesenchymal stem cells.	

tests for muscular dystrophy.


Gene	cDNA change	Amino acid substitution
NOTCH1	c.T4319C	p.I1440T
MLH1	c.A68G	p.E23G
GNAS	c.G1148A	p.R383Q
TP53	c.A733C	p.T245P

Conclusion We tracked cytogenetic heterogeneity using G-banding and interphase FISH analyses during the cancerous transformation of MSCs. Heterogeneity among clones with distinct chromosomal aberrations dynamically changed over time, similar to what is observed in cancer stem cells. We conclude that to accurately evaluate of the tumorigenic potential of MSCs, interphase FISH analyses should be used in combination with conventional cytogenetics.

54. Am J Med Genet A. 2015 May INHERITED DISEASE CUSTOMIZED PANEL

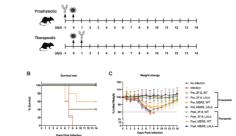
Skeletal overgrowth syndrome caused by overexpression of C-type natriuretic peptide in a girl with balanced chromosomal translocation, t(1;2)(q41;q37.1)

Sample	A girl (Case Report)
Study purpose	We present a fourth case of chromosomal translocation on 2q37.1, whose recipient site interrupted the TGFB2 gene, resulting in the combined phenotypes of CNP overproduction and Loeys-Dietz syndrome (LDS) type IV (MIM 614816).
Main data	Schematic diagram of the targeted region for the next- generation sequencing and Scheme of soft-clipped reads of the breakpoint between the DIS3L2 and TGFB2 sequences

Conclusion We have identified a balanced chromosomal translocation between 1q41 and 2q37.1

Virus & Bacteria

55. Biochem Biophys Res Commun. 2021 Mar


VIRUS ZIKA VIRUS TRUEREPERTOIRE

 Neutralization of Zika virus by E protein domain III-Specific human monoclonal antibody

 Sample
 ZIKV envelope domain III-specific neutralizing antibodies (nAbs) from two convalescent patients with ZIKV infection.

 Study purpose
 The discovery that ZIKV infection in infants and adults is associated with neurological complications showed that countermeasures against ZIKV infection are needed

 Main data
 In vivo prophylactic and therapeutic efficacy of 2F-8 antibody against ZIKV infection

Conclusion 2F-8, a potent anti-ZIKV DIII-specific mAb isolated from ZIKV-infected patients, potently neutralized Asian and American strains of ZIKV in vitro.

56. Microbiol Resour Announc. 2021 Jan

VIRUS SARS-COV-2 WGS

Genome Sequences of Two GH Clade SARS-CoV-2 Strains Isolated from Patients with COVID-19 in South Korea

Sample		2 patients with COVID-19 who were hospitalized in Severance Hospital, Yonsei University					
Study pu	rpose	Reporting the genome sequences of two GH clade severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains isolated from nasopharyngeal swabs from patients with coronavirus disease 2019 (COVID-19) in South Korea.					
Main dat	Main data		Nucleotide and amino acid changes in the YSOO6 and YSOO8 strains, in comparison to the reference strain				
	Nucleotide position		Nucleotide in strain (clade):		Gene name ^b	Amino acid change ^C	
		Hu-1 (L) ^a	YS006 (GH)	YS008 (GH)			
	241	С	Т	Т	5' UTR		
	1059	с	Т	т	nsp2	T85I	
	3037	с	т	т	nsp3		
	11916	с	т	т	nsp7	\$25L	
	14408	с	Т	т	nsp12	P323L	
	16650	с	Т	т	nsp13		
	20675	А	Т	Т	nsp16	Q6L	
	23403	А	G	G	Spike	D614G	
	25563	G	т	т	ORF3a	Q57H	
	26261	с	с	т	E	S6L ^d	
	29179	G	т	т	Ν		
	29779	G	т	т	3' UTR		

Conclusion	These strains had two mutations in the untranslated regions
	and seven nonsynonymous substitutions in open reading
	frames, compared with Wuhan/Hu-1/2019, showing 99.96%
	sequence identity.

References

1. Neuromuscul Disord, 2015 Jun;25(6):502-10. doi: 10.1016/j.nmd.2015.03.006. 2. Mutat Res. 2015 Jul;777:60-8. doi: 10.1016/j.mrfmmm.2015.04.003. 3. Am J Med Genet A. 2015 May;167A(5):1033-8. doi: 10.1002/ajmg.a.36884.

57. J Korean Med Sci. 2020 Nov

VIRUS SARS-COV-2 WGS

Evidence of Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a Restaurant in Korea

Sample	The epidemiological investigation was implemented based on personal interviews and data collection on closed- circuit television images, and cell phone location data. Nasopharyngeal specimens of cases and close contacts were collected				
Study purpose	The transmission mode of severe acute respiratory syndrome coronavirus 2 is primarily known as droplet transmission. However, a recent argument has emerged about the possibility of airborne transmission. On June 17, there was a coronavirus disease 2019(COVID-19) outbreak in Korea associated with long distance droplet transmission.				
Main data	The asymptomatic period and symptom onset of all three coronavirus disease 2019 cases.				
Date 6/10 6/11 Case A (index case)	6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21				
Case B +	6/12 6/13 6/16 				
Case C Exposure	Symptom Confirmed				
Conclusion	Droplet transmission can occur at a distance greater than 2 m if there is direct air flow from an infected person.				

58. Sci Rep. 2021 Mar

VIRUS SARS-COV-2 WGS

Genomic Investigation of the Coronavirus Disease 2019 Outbreak

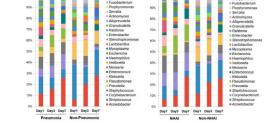
in the Republic of Korea

Sample	Nasopharyngeal and oropharyngeal (NP/OP) swabs and sputum were used for SARS-CoV-2 RNA isolation			
Study purpose	We evaluated the accuracy of genomic investigation by directly comparing South Korea's comprehensive contact tracing data with the genomic associations among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole genome sequences.			
Main data	Contact tracing record arc diagram (a) and maximum likelihood tree (b) of initial 15 cases prior to a church outbreak in South Korea.			
	100 HON			

References

- 1. Biochem Biophys Res Commun. 2021 Mar 19;545:33-39. doi: 10.1016/j.bbrc.2021.01.07
- 2. Microbiol Resour Announc. 2021 Jan 7;10(1):e01384-20. doi: 10.1128/MRA.01384-20.
- Kurean med Sci. 2020 Nov 30;35(46).e415. doi: 10.3346/jkms.2020
 Sci Pop. 2021 Mar 16:11(1):6009. doi: 10.1038/c/1508-021-85623-6

Virus & Bacteria


59. J Transl Med. 2020 Dec

BACTERIA XSEP MAGBEAD

Conclusion

Respiratory microbiome proles differ by recent hospitalization and nursing home residence in patients on mechanical ventilation

Sample	180 endotracheal aspirates (ETAs) from 60 mechanically ventilated intensive care unit (ICU) patients		
Study purpose	Redefining nursing-home- and hospital-associated infections (NHAI) group by revising existing Healthcare- associated pneumonia (HCAP) risk factors.		
Main data	Relative abundance of bacterial communities in the endotracheal aspirates of the study participants over time.		
100% a	b = Campylobacter 100%		

In this prospective observational cohort study of mechanically ventilated patients, the loss of diversity and dysbiosis of the respiratory microbiome were more profound in patients with than without risk factors for NHAI, which were in turn positively associated with the presence of Corynebacterium, and negatively associated with that of Granulicatella, Streptococcus, Staphylococcus and Veillonella.

Others

60. Biomolecules. 2020 Mar

OTHERS TRUEREPERTOIRE

A High-Throughput Single-Clone Phage Fluorescence Microwell Immunoassay and Laser-Driven Clonal Retrieval System

- We describe a high-throughput single-clonal screening system comprised of fluorescence immunoassays as well as a laser-driven clonal DNA retrieval system using microchip technology. The use of a single-clone-level approach in combination with an elaborate sample retrieval method enabled high-throughput sample retrieval with minimal amplification bias and sample cross-contamination.
- The efficiency of this system was tested by using a single-chain variable fragment (scFv)library displayed on phages with a complexity of 5.21 × 105, harboring random mutations at five amino acid residues. Without biopanning, we could screen 78 antigen-reactive (AR) scFv sequences with mutations, restricted to the randomized residues when 70,000 clones were screened in parallel. We believe that the result is superior, or at least equivalent, to the conventional biopanning and screening procedure.

61. Genes Genomics. 2019 May

OTHERS

Enzymatic construction of shRNA library from oligonucleotide library

- We develop a new method that efficiently constructs a shRNA library at low cost, using treatments with several enzymes and an oligonucleotide library.
- The library of shRNA expression cassettes, which were cloned into a lentiviral plasmid, was produced through several enzymatic reactions, starting from a library of 20,000 different short oligonucleotides produced by microarray-based oligonucleotide synthesis.
- The NGS sequence analysis of the library shows that 99.8% of them (19,956 from 20,000 sequences) were contained in the library: 63.2% of them represent the correct sequences and the rest showed one or two base pair differences from the expected sequences.

62. Nat Commun. 2019 Feb

OTHERS

Barcode-free next-generation sequencing error validation for ultra-rare variant detection

- NGS has limitations in detecting rare-frequency variants (< 1%) because of high sequencing errors (> 0.1-1%). NGS errors could be filtered out using molecular barcodes, by comparing read replicates among those with the same barcodes. Accordingly, these barcoding methods require redundant reads of non-target sequences, resulting in high sequencing cost.
- We present a cost-effective NGS error validation method in a barcode-free manner. By physically extracting and individually amplifying the DNA clones of erroneous reads, we distinguish true variants of frequency > 0.003% from the systematic NGS error and selectively validate NGS error after NGS. We achieve a PCR-induced error rate of 2.5×10-6 per base per doubling event, using 10 times less sequencing reads compared to those from previous studies.

rences

1. J Transl Med. 2020 Dec 7;18(1):464. doi: 10.1186/s12967-020-02642-z.

Celemics.com

63. Nat Biotechnol. 2018 Mar

OTHERS

Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity

- · We present two algorithms to predict the activity of AsCpf1 guide RNAs.
- Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.

64. Nucleic Acids Res. 2018 May

OTHERS

High-throughput construction of multiple cas9 gene variants via assembly of high-depth tiled and sequence-verified oligonucleotides

- We introduce the concept of high-depth tiled oligo design to successfully utilize megacloned oligos for gene synthesis.
- Using acquired oligos from a single round of the megacloning process, we assembled 72 of 81 target Cas9-coding gene variants. We further validated 62 of these cas9 constructs, and deposited the plasmids to Add gene for subsequent functional characterization by the scientific community.
- This study demonstrates the utility of using sequence-verified oligos for DNA assembly and provides a practical and reliable optimized method for high-throughput gene synthesis.

References

- 1. Biomolecules. 2020 Mar 29;10(4):517. doi: 10.3390/biom10040517
- 2. Genes Genomics. 2019 May;41(5):573-581. doi: 10.1007/s13258-019-00800-2
- Nat Biotechnol. 2018 Mar;36(3):239-241. doi: 10.1038/nbt.4061.
 Nucleic Acids Res. 2018 May 18;46(9):e55. doi: 10.1093/nar/okv112

Your trusted partner for NGS solution

